

# A-Level Physics OCR Physics A Course Booklet



"I'm warning you, Perkins - your flagrant disregard for the laws of physics will not be tolerated!"

Name:.....

#### 2025-27

Mr Armstrong (<a href="mailto:sparmstrong@torbridge.net">sparmstrong@torbridge.net</a>)

You may wish to keep a digital copy of this document that you can edit and share with your teachers via office 365, teams or google classroom.

#### My Studies

| Target Grade for A-level Physics: |     |         | GCSE Grades  |                     |   |       |                       |               |                                |   |        |        |  |
|-----------------------------------|-----|---------|--------------|---------------------|---|-------|-----------------------|---------------|--------------------------------|---|--------|--------|--|
|                                   |     | Che     | mistry:      | Physic<br>English L |   | ics:  | Biology: English Lit: |               | Double Science:  English Lang: |   | ience: |        |  |
|                                   |     | M       | aths         |                     |   | Lang: |                       |               |                                |   | ang:   |        |  |
| Othe                              | rs  |         |              |                     |   |       |                       |               |                                |   |        |        |  |
| Day                               | 9 - | 1<br>10 | P2<br>10 - 1 | 1                   |   |       | 3<br>20 –<br>20       | P4<br>12.20 – |                                |   |        | - 3.00 |  |
| Mon                               |     |         |              |                     | В |       |                       |               |                                | L |        |        |  |
| Tue                               |     |         |              |                     | R |       |                       |               |                                | U |        |        |  |
| Wed                               |     |         |              |                     | E |       |                       |               |                                | N |        |        |  |
| Thur                              |     |         |              |                     | Α |       |                       |               |                                | С |        |        |  |
| Fri                               |     |         |              |                     | K |       |                       |               |                                | Н |        |        |  |

## **Skills Audit**

Please rate 1-5 1= poor 5=excellent

| Skill                 | Sep | Autumn<br>½ term | Xmas<br>Holiday | Spring ½ term | Easter<br>Holiday | Summer ½ term | Year<br>End | Evidence |
|-----------------------|-----|------------------|-----------------|---------------|-------------------|---------------|-------------|----------|
| Basic Maths           |     |                  |                 |               |                   |               |             |          |
| Problem solving       |     |                  |                 |               |                   |               |             |          |
| SPAG                  |     |                  |                 |               |                   |               |             |          |
| Extended writing      |     |                  |                 |               |                   |               |             |          |
| Language precision    |     |                  |                 |               |                   |               |             |          |
| Practical skills      |     |                  |                 |               |                   |               |             |          |
| Data presentation     |     |                  |                 |               |                   |               |             |          |
| Analysis & evaluation |     |                  |                 |               |                   |               |             |          |
| Note-taking           |     |                  |                 |               |                   |               |             |          |
| Research              |     |                  |                 |               |                   |               |             |          |
| Referencing           |     |                  |                 |               |                   |               |             |          |
| Additional reading    |     |                  |                 |               |                   |               |             |          |
| Revision              |     |                  |                 |               |                   |               |             |          |
| Organisation          |     |                  |                 |               |                   |               |             |          |
| Time management       |     |                  |                 |               |                   |               |             |          |
| Deadlines             |     |                  |                 |               |                   |               |             |          |
| Communication         |     |                  |                 |               |                   |               |             |          |
| Teamwork              |     |                  |                 |               |                   |               |             |          |

## **A-Level Course:**

All three externally assessed components (01–03) contain some synoptic assessment, some extended response questions and some stretch and challenge questions. Stretch and challenge questions are designed to allow the most able learners the opportunity to demonstrate the full extent of their knowledge and skills. Stretch and challenge questions will support the awarding of A\* grade at A level, addressing the need for greater differentiation between the most able learners.

## Unit H556/01 Modelling physics (2hrs 15mins)

This component is worth 100 marks and is split into two sections and assesses content from teaching modules 1, 2, 3 and 5. Learners answer all questions. **Section A** contains multiple choice questions. This section of the paper is worth 15 marks. **Section B** includes short answer question styles (structured questions, problem solving, calculations, practical) and extended response questions. This section of the paper is worth 85 marks.

## Unit H556/02 Exploring physics (2hrs 15mins)

This component is worth 100 marks and is split into two sections and assesses content from teaching modules 1, 2, 4 and 6. Learners answer all questions. **Section A** contains multiple choice questions. This section of the paper is worth 15 marks. **Section B** includes short answer question styles (structured questions, problem solving, calculations, practical) and extended response questions. This section of the paper is worth 85 marks.

## Unit H556/03 Unified physics (1hr 30mins)

This component assesses content from across all teaching modules 1 to 6. Learners answer all questions. This component is worth 70 marks. Question styles include short answer (structured questions, problem solving, calculations, practical) and extended response questions.

- Practical Endorsement in Physics: a series of practical tasks carried out as part of teaching and learning in order to ensure competence in practical work. You will be expected to keep a record of these practical activities in a lab book which will be checked by your teacher and the exam board.
  - 25% of the questions in your final exams will be related to the practical skills that you have learnt during the course.

#### **Success Tips:**

- Keep up with notes and reviewing during the year.
- Use the RAG sheets constantly, they are everything you need to know.
- Don't fall behind during the year. Complete your homework tasks and be proactive in finding help and additional information.
- Be organised, set up a timetable of revision so you know what you are revising and when (with plenty of time).
- Start early and find the best method. Some people like making flash cards, posters, quizzes or a mixture. Find what suits **you** and use it.
- Don't suffer alone. Meet up and revise certain topics in groups, make quizzes for each other. Or text attack each other (Really fun, you text a question to everyone in the class, first one to reply wins, create a big loop of questions).
- Use your teachers! Come in with questions you can't do or topics you need help with. Make them work, they can't guess what you are struggling with.
- It is supposed to be hard. Don't revise the stuff you find easy just because it makes you feel smart. Focus on the stuff you cannot do and make it easy with good quality, focused revision. Use your RAG sheets to make your revision specific.
- Do loads and loads of past papers and exam questions. Find the mark schemes and mark them, see
  what kind of language the mark scheme uses. After a while you will recognise what the examiners
  want to see from you. As this is a new course, the past papers will not be the same format as your
  exam but we will use specimen papers so you are not surprised when exam time comes.
- Read the examiners reports for exams. (after you have done the exam). These are invaluable, they give an insight into what the examiners are looking for and common mistakes made by students.
- **Don't give up**: It is never too late, and don't get disheartened. You can always ask for more help.

### **Department Expectations and Help**

You are expected to match your contact hours per subject with self-study. This means you are expected to complete 5 hours of physics work as independent study per week. There are a variety of methods you could use to make sure this time is spent wisely but a good place to start might be.

- 1 hour reviewing notes from lessons and rewriting if necessary (also use this time to formulate questions to ask at the start of next lesson). If you don't get something, use the text books to help you annotate your notes.
- 1 hour completing the recommended reading ahead of next lesson and making notes where appropriate.
- 1-2 hour completing questions either from the revision guide, textbooks, or completing past paper questions (or ideally a mix of both). You should also self-assess these where possible.
- Past papers and mark schemes can be found here:
   <a href="https://www.ocr.org.uk/qualifications/past-paper-finder/">https://www.ocr.org.uk/qualifications/past-paper-finder/</a>. In the drop-down boxes select Physics, AS/A level GCE, Physics A H156-H556 (from 2015)
- 1 hour reading around the subject and self-evaluating your learning. It is important to log and evidence this; for example print off an article you have read and annotate the article with your thoughts or make notes on an e-book and reference the book.

Online there is a wealth of resources for this course, SEARCH FOR IT! There is a suggested reading list further on in this guide.

You will have access to your text book and some resources via <a href="www.kerboodle.com">www.kerboodle.com</a>, you will each be given a student login to access these resources.

#### **MY NOTES**

As a Department, we expect you to keep good quality notes from your lessons and from the independent work that you complete outside of lessons. This means that on occasion your class teacher or another member of staff from the Science Department may wish to see your notes. With this in mind it is a very good idea to ensure that your notes are kept neatly, tidily, and reviewed after each of your lessons. This means that you need to be organised in your approach to your study.

You should keep your work in a lever arch file with dividers for each Unit of work, this will only need to be brought in to school for folder checks. You should have a smaller folder (also with dividers) in which to keep your current work. This is what you would bring to each lesson, and then at the end of a topic, the notes/work can be transferred across to your lever arch folder.

You will also be expected to keep a record of your practical work in a lab book, which will keep a working record of your lab work. This is likely to have holes punched in it for you so that you can keep it in your folder. All of you practical work must have a date on each page so it can act as a record of which skills you have been practicing, and what equipment you have been using.

#### **EXAM SPECIFICATION**

The personal Learning Checklists (PLC) for your subject are in this booklet and cover the key learning points of the course; you will be expected to monitor your own progress as you go through the course. You will also be asked to record your progress on an online spreadsheet which is shared with your teachers. This will help you to assess the quality of your own notes, learning and skills and the extent of the work that you have completed during your studies. It's very important that you set goals using the exam specification in order to ensure that your revision doesn't begin at the last minute. You should begin the process of revision after almost the first class, planning to have high quality notes in order to facilitate easy recall, understanding, and exam performance. You can use a highlighter to engage with the specification or simply underline or annotate the specification, highlighting all of the things that you have found a challenge to allow you to focus on the areas you have struggled with during your revision.

#### WHAT STYLE OF LESSONS CAN I EXPECT? HOW ARE THE LESSON SUCCESS CRITERIA GENERATED?

Lessons will follow the same format as those that you have experienced in year 11, starting with a low stakes quiz and sharing of the intended learning outcomes, then cycles of teacher instruction, deliberate practice and review. The main difference will be that where there is a double lesson, we would not necessarily do a low stakes quiz at the start of the second lesson, although this may be appropriate at times.

At A-level we need to develop your practical skills as these form a large part of the questions in the final exams and there are skills that you must acquire in order to achieve the practical endorsement part of the qualification.

#### MONITORING AND COACHING

You will be expected to meet your subject teacher at least once per half term in order to monitor your progress and feedback to you on how you are doing; it's likely that this will be part of your normal sequence of lessons. However you may find that if this is difficult to schedule your teacher may, with notice, request that you do this out of lesson time. If this is the case please try to remember that your teacher is probably going out of their way in order to support you and please try to accommodate their request.

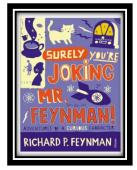
If you are absent from your lessons, you must make your teacher aware of the reason for your absence, by sending them an email explaining why. You will also then be required to catch up on any work you've missed before your next lesson. You are strongly discouraged from taking holidays during term as this will have a large impact on your learning. Any attendance concerns or missing of deadlines will lead to a cause for concern being raised and discussed with you and your parents, with strategies to try to improve.

If there is no immediate improvement, the cause for concern will be raised to a higher level, and more formal support will be put into place.

All notes about the support you've been offered and taken will be made on SIMS so that the information is available to all the staff supporting you, as well as your parents. Of course, this may well have an impact on the quality of the reference we can offer you at the end of your course.

## A Level Physics - Reading Lists

To achieve the highest grades and increase your chances at university interviews it is essential that as part of your independent study regime you read around the subject. The list below are some suggested texts to get you started.

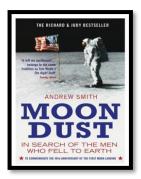

The titles are arranged in two groups; firstly study books that cover similar materials in a different format to your everyday textbooks and secondly additional reading that is beyond the course specification.

## **Additional Study Books**

- Physics for Dummies (I & II) by Steven Holzner, ISBN 9781118595763
- Easy Physics Step-by-Step by Jonathan Wolf, ISBN 9780071805926
- Excelling at A-level Physics Capacitors by Stathis Stefanidis ISBN 978-1973455387
- Excelling at A-level Physics Circular Motion by Stathis Stefanidis ISBN 978-1549866326
- Excelling at A-level Physics Gravitational fields by Stathis Stefanidis ISBN 978-1549608346
- Excelling at A-level Physics Capacitors by Stathis Stefanidis
- Excelling at A-level Physics Capacitors by Stathis Stefanidis

#### **Further Reading**

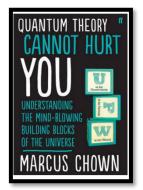
- Seventeen Equations that Changed the World by Ian Stewart, ISBN 9781847657695
- Physics in the Modern World by Jerry Marion, ISBN 9780323145312
- Physics Review Physics journal published by Philip Allan Magazines
- Surely You're Joking Mr Feynman: Adventures of a Curious Character




**ISBN - 009917331X -** Richard Feynman was a Nobel Prize winning Physicist. In my opinion he epitomises what a Physicist is. By reading this books you will get insight into his life's work including the creation of the first atomic bomb and his bongo playing adventures and his work in the field of particle physics.

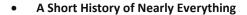
(Also available on Audio book).

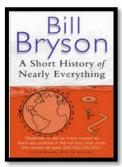
 $\underline{https://www.waterstones.com/books/search/term/surely+youre+joking+mr+feynman++adventures+of+a+curious+ch}\\ \underline{aracter}$ 


• Moondust: In Search of the Men Who Fell to Earth



**ISBN** – **1408802384** - One of the greatest scientific achievements of all time was putting mankind on the surface of the moon. Only 12 men made the trip to the surface, at the time of writing the book only 9 are still with us. The book does an excellent job of using the personal accounts of the 9 remaining astronauts and many others involved in the space program at looking at the whole space-race era, with hopefully a new era of space flight about to begin as we push on to put mankind on Mars in the next couple of decades.


https://www.waterstones.com/books/search/term/moondust++in+search+of+the+men+who+fell+to+earth


Quantum Theory Cannot Hurt You: Understanding the Mind-Blowing Building Blocks of the Universe



**ISBN - 057131502X** - Any Physics book by Marcus Chown is an excellent insight into some of the more exotic areas of Physics that require no prior knowledge. In your first year of A-Level study you will meet the quantum world for the first time. This book will fill you with interesting facts and handy analogies to whip out to impress your peers!

https://www.waterstones.com/book/quantum-theory-cannot-hurt-you/marcus-chown/9780571315024





**ISBN** – **0552997048** - A modern classic. Popular science writing at its best. A Short History of Nearly Everything Bill Bryson's quest to find out everything that has happened from the Big Bang to the rise of civilization - how we got from there, being nothing at all, to here, being us. Hopefully by reading it you will gain an awe-inspiring feeling of how everything in the universe is connected by some fundamental laws.

https://www.waterstones.com/books/search/term/a+short+history+of+nearly+everything

• Thing Explainer: Complicated Stuff in Simple Words



**ISBN – 1408802384** - This final recommendation is a bit of a wild-card – a book of illustrated cartoon diagrams that should appeal to the scientific side of everyone. Written by the creator of online comic XTCD (a great source of science humour) is a book of blueprints from everyday objects such as a biro to the Saturn V rocket and an atom bomb, each one meticulously explained BUT only with the most common 1000 words in the English Language. This would be an excellent coffee table book in the home of every scientist.

https://www.waterstones.com/book/thing-explainer/randall-munroe/9781473620919

## **Movie / Video Clip Recommendations**

Hopefully you'll get the opportunity to soak up some of the Sun's rays over the summer – synthesising some important Vitamin-D – but if you do get a few rainy days where you're stuck indoors here are some ideas for films to watch or clips to find online.

#### **Science Fictions Films**

- 1. Moon (2009)
- 2. Gravity (2013)
- 3. Interstellar (2014)
- 4. The Imitation Game (2015)
- 5. The Prestige (2006)

#### Online Clips / Series

1. Minute Physics – Variety of Physics questions explained simply (in felt tip) in a couple of minutes. Addictive viewing that will have you watching clip after clip – a particular favourite of mine is "Why is the Sky Dark at Night?"

https://www.youtube.com/user/minutephysics

- 2. Wonders of the Universe / Wonders of the Solar System Both available of Netflix as of 17/4/16 Brian Cox explains the Cosmos using some excellent analogies and wonderful imagery.
- 3. Shock and Awe, The Story of Electricity A 3 part BBC documentary that is essential viewing if you want to see how our lives have been transformed by the ideas of a few great scientists a little over 100 years ago. The link below takes you to a stream of all three parts joined together but it is best watched in hourly instalments. Don't forget to boo when you see Edison. (alternatively watch any Horizon documentary loads of choice on Netflix and the I-Player)

https://www.youtube.com/watch?v=Gtp51eZkwol

4. **NASA TV** – Online coverage of launches, missions, testing and the ISS. Plenty of clips and links to explore to find out more about applications of Physics in Space technology.

http://www.nasa.gov/multimedia/nasatv/

**The Fantastic Mr. Feynman** – I cannot recommend this 1 hour documentary highly enough. See the life's work of the "great explainer", a fantastic mind that created mischief in all areas of modern Physics.

https://www.youtube.com/watch?v=LyqleIxXTpw

## **Summer Tasks**

## **Research activity**

To get the best grades in A Level Physics you will have to get good at completing independent research and making your own notes on difficult topics. Below are links to 5 websites that cover some interesting Physics topics.

Using the Cornell notes system: <a href="http://coe.jmu.edu/learningtoolbox/cornellnotes.html">http://coe.jmu.edu/learningtoolbox/cornellnotes.html</a> make 1 page of notes from each site covering a topic of your choice.

#### a) http://home.cern/about

CERN encompasses the Large Hadron Collider (LHC) and is the largest collaborative science experiment ever undertaken. Find out about it here and make a page of suitable notes on the accelerator.

b) <a href="http://joshworth.com/dev/pixelspace/pixelspace solarsystem.html">http://joshworth.com/dev/pixelspace/pixelspace solarsystem.html</a>
The solar system is massive and its scale is hard to comprehend. Have a look at this award winning website and make a page of suitable notes.

c) <a href="https://phet.colorado.edu/en/simulations/category/html">https://phet.colorado.edu/en/simulations/category/html</a>

PhET create online Physics simulations when you can complete some simple experiments online. Open up the resistance of a wire html5 simulation. Conduct a simple experiment and make a one page summary of the experiment and your findings.

d) <a href="http://climate.nasa.gov/">http://climate.nasa.gov/</a>

NASA's Jet Propulsion Laboratory has lots of information on Climate Change and Engineering Solutions to combat it. Have a look and make notes on an article of your choice.

e) <a href="http://www.livescience.com/46558-laws-of-motion.html">http://www.livescience.com/46558-laws-of-motion.html</a>

Newton's Laws of Motion are fundamental laws for the motion of all the object we can see around us. Use this website and the suggested further reading links on the webpage to make your own 1 page of notes on the topics.

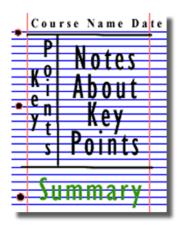



Figure 1:

http://coe.jmu.edu/learningtoolbox/images/noteb4.gif

## **Pre-Knowledge Topics**

Below are ten topics that are essential foundations for you study of A-Level Physics. Each topics has example questions and links where you can find our more information as you prepare for next year.

#### **Symbols and Prefixes**

At A level, unlike GCSE, you symbols, units and prefixes. you may have already using during your A level

Solve the following:

- 1. How many metres in 2.4 km?
- 2. How many joules in 8.1 MJ?
- **3.** Convert 326 GW into W.
- **4.** Convert 54 600 mm into m.
- **5.** How many grams in 240 kg?

| Prefix               | Symbol      | Power of ten                           |
|----------------------|-------------|----------------------------------------|
| Nano                 | n           | x 10 <sup>-9</sup>                     |
| Micro                | μ           | x 10 <sup>-6</sup>                     |
| Quantity<br>Milli    | Symbol<br>m | <b>Unit</b> x 10 <sup>-3</sup>         |
| Velocity<br>Centi    | c           | ms <sup>-1</sup><br>x 10 <sup>-2</sup> |
| Acceleration<br>Kilo | a<br>k      | ms <sup>-2</sup><br>x 10 <sup>3</sup>  |
| Time<br>Mega         | M           | x 10 <sup>6</sup>                      |
| Force<br>Giga        | G F         | N<br>x 10 <sup>9</sup>                 |
| Resistance           | R           | Ω                                      |
| Potential difference | V           | V                                      |
| Current              | 1           | А                                      |
| Energy               | E or W      | J                                      |
| Pressure             | Р           | Pa                                     |
| Momentum             | р           | kgms <sup>-1</sup>                     |
| Power                | Р           | W                                      |
| Density              | ρ           | kgm <sup>-3</sup>                      |
| Charge               | Q           | С                                      |
|                      |             | standard form                          |

need to remember all Below is a list of quantities come across and will be course

**6.**Convert 0.18 nm into m.

**7.**Convert 632 nm into m. Express in standard form.

**8.**Convert 1002 mV into V. Express in standard form.

**9.**How many eV in 0.511 MeV? Express in standard form.

**10.** How many m in 11 km? Express in

standard form.

#### **Standard Form**

At A level quantity will be written in standard form, and it is expected that your answers will be too.

This means answers should be written as ....x  $10^y$ . E.g. for an answer of 1200kg we would write  $1.2 \times 10^3$ kg. For more information visit: www.bbc.co.uk/education/guides/zc2hsbk/revision

1. Write 2530 in standard form.

2. Write 280 in standard form.

**3.** Write 0.77 in standard form.

**8.** Write 3.505 x 10 <sup>1</sup> as a normal number.

**4.** Write 0.0091 in standard form.

**9.** Write  $8.31 \times 10^6$  as a normal number.

- 5. Write 1 872 000 in standard form.
- **10.** Write  $6.002 \times 10^2$  as a normal number.

**6.** Write 12.2 in standard form.

- 11. Write  $1.5 \times 10^{-4}$  as a normal number.
- **7.** Write  $2.4 \times 10^{2}$  as a normal number.
- **12.** Write  $4.3 \times 10^3$  as a normal number.

#### **Rearranging formulae**

This is something you will have done at GCSE and it is crucial you master it for success at A level. For a recap of GCSE watch the following links:

 $\underline{www.khanacademy.org/math/algebra/one-variable-linear-equations/old-school-equations/v/solving-for-a-variable}$ 

www.youtube.com/watch?v= WWgc3ABSj4

Rearrange the following:

- 1.  $E=m \times g \times h$  to find h
- 2.  $Q = I \times t$  to find I
- **3.**  $E = \frac{1}{2} \text{ m } v^2 \text{ to find m}$
- **4.**  $E = \frac{1}{2} \text{ m } v^2 \text{ to find } v$

- 5. v = u + at to find u
- 6. v = u + at to find a
- 7.  $v^2 = u^2 + 2as$  to find s
- 8.  $v^2 = u^2 + 2as$  to find u

#### **Significant figures**

At A level you will be expected to use an appropriate number of significant figures in your answers. The number of significant figures you should use is the same as the number of significant figures in the data you are given. You can never be more precise than the data you are given so if that is given to 3 significant your answer should be too. E.g. Distance = 8.24m, time = 1.23s therefore speed = 6.75m/s

The website below summarises the rules and how to round correctly.

http://www.purplemath.com/modules/rounding2.htm

Give the following to 3 significant figures:

**1.** 3.4527

**4.** 1.0247

**2.** 40.691

**5.** 59.972

**3.** 0.838991

Calculate the following to a suitable number of significant figures:

- **6.** 63.2/78.1
- **7.** 39+78+120
- **8.** (3.4+3.7+3.2)/3
- **9.** 0.0256 x 0.129
- **10.** 592.3/0.1772

#### **Atomic Structure**

You will study nuclear decay in more detail at A level covering the topics of radioactivity and particle physics. In order to explain what happens you need to have a good understanding of the model of the atom. You need to know what the atom is made up of, relative charges and masses and how sub atomic particles are arranged.

The following video explains how the current model was discovered <a href="www.youtube.com/watch?v=wzALbzTdnc8">www.youtube.com/watch?v=wzALbzTdnc8</a>

Describe the model used for the structure of an atom including details of the individual particles that make up an atom and the relative charges and masses of these particles. You may wish to include a diagram and explain how this model was discovered by Rutherford.

#### **Recording Data**

Whilst carrying out a practical activity you need to write all your raw results into a table. Don't wait until the end, discard anomalies and then write it up in neat.

Tables should have column heading and units in this format quantity/unit e.g. length/mm

All results in a column should have the same precision and if you have repeated the experiment you should calculate a mean to the same precision as the data.

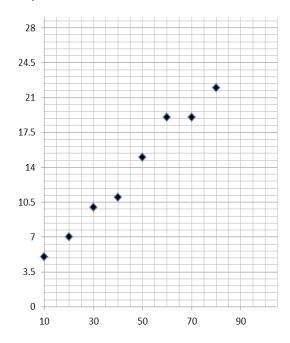
Below is a link to practical handbooks so you can familiarise yourself with expectations.

http://filestore.aga.org.uk/resources/physics/AQA-7407-7408-PHBK.PDF

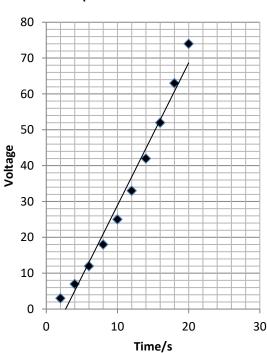
Below is a table of results from an experiment where a ball was rolled down a ramp of different lengths. A ruler and stop clock were used.

1) Identify the errors the student has made.

|           | Time    |         |         |       |  |  |  |  |
|-----------|---------|---------|---------|-------|--|--|--|--|
| Length/cm | Trial 1 | Trial 2 | Trial 3 | Mean  |  |  |  |  |
| 10        | 1.45    | 1.48    | 1.46    | 1.463 |  |  |  |  |
| 22        | 2.78    | 2.72    | 2.74    | 2.747 |  |  |  |  |
| 30        | 4.05    | 4.01    | 4.03    | 4.03  |  |  |  |  |
| 41        | 5.46    | 5.47    | 5.46    | 5.463 |  |  |  |  |
| 51        | 7.02    | 6.96    | 6.98    | 6.98  |  |  |  |  |
| 65        | 8.24    | 9.68    | 8.24    | 8.72  |  |  |  |  |
| 70        | 9.01    | 9.02    | 9.0     | 9.01  |  |  |  |  |


#### **Graphs**

After a practical activity the next step is to draw a graph that will be useful to you. Drawing a graph is a skill you should be familiar with already but you need to be extremely vigilant at A level. Before you draw your graph to need to identify a suitable scale to draw taking the following into consideration:


- the maximum and minimum values of each variable
- whether 0.0 should be included as a data point; graphs don't need to show the origin, a false origin can be used if your data doesn't start near zero.
- the plots should cover at least half of the grid supplied for the graph.
- the axes should use a sensible scale e.g. multiples of 1,2, 5 etc)

Identify how the following graphs could be improved









#### **Forces and Motion**

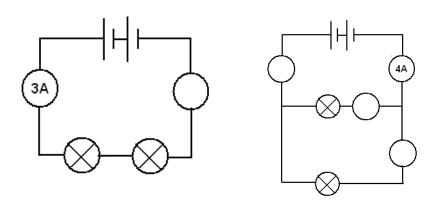
At GCSE you studied forces and motion and at A level you will explore this topic in more detail so it is essential you have a good understanding of the content covered at GCSE. You will be expected to describe, explain and carry calculations concerning the motion of objects. The websites below cover Newton's laws of motion and have links to these in action.

http://www.physicsclassroom.com/Physics-Tutorial/Newton-s-Laws

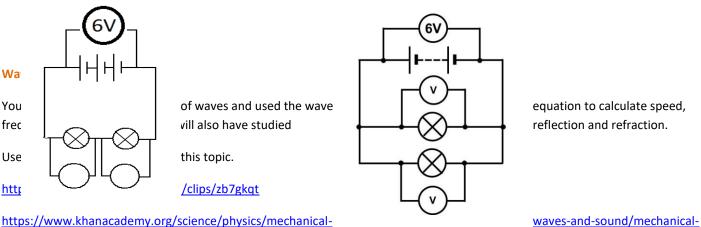
http://www.sciencechannel.com/games-and-interactives/newtons-laws-of-motion-interactive/

Sketch a velocity-time graph showing the journey of a skydiver after leaving the plane to reaching the ground.

Mark on terminal velocity.


#### **Electricity**

At A level you will learn more about how current and voltage behave in different circuits containing different components. You should be familiar with current and voltage rules in a series and parallel circuit as well as calculating the resistance of a device.


http://www.allaboutcircuits.com/textbook/direct-current/chpt-1/electric-circuits/

http://www.physicsclassroom.com/class/circuits

1a) Add the missing ammeter readings on the circuits below.



- b) Explain why the second circuit has more current flowing than the first.
- 2) Add the missing potential differences to the following circuits



https://www.khanacademy.org/science/physics/mechanical-waves/v/introduction-to-waves

waves-and-sound/mechanical-

https://www.khanacademy.org/science/physics/mechanical-waves-and-sound/mechanical-waves/v/introduction-to-waves

1) Draw a diagram showing the refraction of a wave through a rectangular glass block. Explain why the ray of light takes this path.

| 2 | Describe the difference | between a longitudina | al and transverse waves and | give an example of each |
|---|-------------------------|-----------------------|-----------------------------|-------------------------|
|   |                         |                       |                             |                         |

3) Draw a wave and label the wavelength and amplitude

## **Unit 1: Practical Skills in Physics**

## **Topic 1: Practical Skills Assessed in a Written Examination**

| Key Words            | Definition |
|----------------------|------------|
| Independent Variable |            |
| Dependent Variable   |            |
| Control Variable     |            |
| Quantitative         |            |
| Qualitative          |            |
| Precision            |            |
| Accuracy             |            |
| Margin of Error      |            |
| Percentage Error     |            |
| Uncertainty          |            |

|                                                             | RAG              |                 |     |             |          |  |  |
|-------------------------------------------------------------|------------------|-----------------|-----|-------------|----------|--|--|
| Criteria                                                    | Before<br>Lesson | After<br>Lesson | ЕОМ | Mock<br>Rev | Revision |  |  |
| 1.1.1 Planning                                              |                  |                 |     |             |          |  |  |
| a) Design experiments to solve problems set in a            |                  |                 |     |             |          |  |  |
| practical context. Including selection of suitable          |                  |                 |     |             |          |  |  |
| apparatus, equipment and techniques for the                 |                  |                 |     |             |          |  |  |
| proposed experiment.                                        |                  |                 |     |             |          |  |  |
| (b) Identify variables that must be controlled, where       |                  |                 |     |             |          |  |  |
| appropriate.                                                |                  |                 |     |             |          |  |  |
| (c) Evaluate whether an experimental method is              |                  |                 |     |             |          |  |  |
| appropriate to meet the expected outcomes.                  |                  |                 |     |             |          |  |  |
| 1.1.2 Implementing                                          | I                |                 |     |             |          |  |  |
| (a) Demonstrate how to use a wide range of                  |                  |                 |     |             |          |  |  |
| practical apparatus and techniques correctly.               |                  |                 |     |             |          |  |  |
| (b) Select appropriate units for measurements.              |                  |                 |     |             |          |  |  |
| (c) Present observations and data in an appropriate format. |                  |                 |     |             |          |  |  |
| 1.1.3 Analysis                                              |                  |                 |     |             |          |  |  |
| (a) Process, analyse and interpret qualitative and          |                  |                 |     |             |          |  |  |
| quantitative experimental results to reach valid            |                  |                 |     |             |          |  |  |
| conclusions, where appropriate.                             |                  |                 |     |             |          |  |  |
| (b) Use appropriate mathematical skills for analysis        |                  |                 |     |             |          |  |  |
| of quantitative data.                                       |                  |                 |     |             |          |  |  |
| (c) Select appropriate number of significant figures.       |                  |                 |     |             |          |  |  |
| (d) Plot and interpret suitable graphs from                 |                  |                 |     |             |          |  |  |
| experimental results, including                             |                  |                 |     |             |          |  |  |
| (i) selection and labelling of axes with                    |                  |                 |     |             |          |  |  |
| appropriate scales, quantities and units                    |                  |                 |     |             |          |  |  |
| (ii) measurement of gradients and intercepts.               |                  |                 |     |             |          |  |  |
| 1.1.4 Evaluation                                            |                  |                 |     |             |          |  |  |
| (a) Demonstrate the ability to evaluate results and         |                  |                 |     |             |          |  |  |
| draw conclusions, including evaluation of how the           |                  |                 |     |             |          |  |  |
| scientific community use results to validate new            |                  |                 |     |             |          |  |  |
| knowledge and ensure integrity.                             |                  |                 |     |             |          |  |  |
| (b) Identify anomalies in experimental                      |                  |                 |     |             |          |  |  |
| measurements.                                               |                  |                 |     |             |          |  |  |
| (c) Identify the limitations in experimental                |                  |                 |     |             |          |  |  |
| procedures.                                                 |                  |                 |     |             |          |  |  |
| (d) Discuss precision and accuracy of                       |                  |                 |     |             |          |  |  |
| measurements and data, including margins of                 |                  |                 |     |             |          |  |  |
| error, percentage errors and uncertainties in               |                  |                 |     |             |          |  |  |
| apparatus.                                                  |                  |                 |     |             |          |  |  |
| (e) Refine experimental design by suggestion                |                  |                 |     |             |          |  |  |
| of improvements to the procedures and apparatus.            |                  |                 |     |             |          |  |  |

## **Unit 1: Practical Skills in Physics**

# **Topic 2: Practical Skills Assessed in the Practical Endorsement**

|                                                       | RAG          |                 |     |             |          |  |  |
|-------------------------------------------------------|--------------|-----------------|-----|-------------|----------|--|--|
| Criteria                                              | Be<br>Lesson | After<br>Lesson | EOM | Mock<br>Rev | Revision |  |  |
| 1.2.1 Practical Skills                                |              |                 |     |             | •        |  |  |
| Independent thinking:                                 |              |                 |     |             |          |  |  |
| (a) Apply investigative approaches and methods to     |              |                 |     |             |          |  |  |
| practical work including how to solve problems in a   |              |                 |     |             |          |  |  |
| practical context.                                    |              |                 |     |             |          |  |  |
| Use and application of scientific methods and         |              |                 |     |             |          |  |  |
| practices:                                            |              |                 |     |             |          |  |  |
| (b) Safely and correctly use a range of practical     |              |                 |     |             |          |  |  |
| equipment and materials.                              |              |                 |     |             |          |  |  |
| Including identification of potential hazards and     |              |                 |     |             |          |  |  |
| how to minimise them.                                 |              |                 |     |             |          |  |  |
| (c) Follow written instructions.                      |              |                 |     |             |          |  |  |
| (d) Make and record observations/measurements.        |              |                 |     |             |          |  |  |
| (e) Keep appropriate records of experimental          |              |                 |     |             |          |  |  |
| activities.                                           |              |                 |     |             |          |  |  |
| (f) Present information and data in a scientific way. |              |                 |     |             |          |  |  |
| (g) Use appropriate software and tools to process     |              |                 |     |             |          |  |  |
| data, carry out research and report findings.         |              |                 |     |             |          |  |  |
| Research and referencing:                             |              |                 |     |             |          |  |  |
| (h) Use online and offline research skills including  |              |                 |     |             |          |  |  |
| websites, textbooks and other printed scientific      |              |                 |     |             |          |  |  |
| sources of information.                               |              |                 |     |             |          |  |  |
| (i) Correctly cite sources of information.            |              |                 |     |             |          |  |  |
| Instruments and equipment:                            |              |                 |     |             |          |  |  |
| (j) Use a wide range of experimental and practical    |              |                 |     |             |          |  |  |
| instruments, equipment and techniques.                |              |                 |     |             |          |  |  |

|                                                        | RAG              |                 |     |             |          |  |  |
|--------------------------------------------------------|------------------|-----------------|-----|-------------|----------|--|--|
| Criteria                                               | Before<br>Lesson | After<br>Lesson | ЕОМ | Mock<br>Rev | Revision |  |  |
| 1.2.2 Use of Apparatus and Techniques                  |                  |                 |     | 1           |          |  |  |
| (a) use of appropriate analogue apparatus to           |                  |                 |     |             |          |  |  |
| record a range of measurements (to include length/     |                  |                 |     |             |          |  |  |
| distance, temperature, pressure, force, angles         |                  |                 |     |             |          |  |  |
| and volume) and to interpolate between scale           |                  |                 |     |             |          |  |  |
| markings.                                              |                  |                 |     |             |          |  |  |
| (b) Use of appropriate digital instruments, including  |                  |                 |     |             |          |  |  |
| electrical multimeters, to obtain a range of           |                  |                 |     |             |          |  |  |
| measurements (to include time, current, voltage,       |                  |                 |     |             |          |  |  |
| resistance and mass.)                                  |                  |                 |     |             |          |  |  |
| (c) Use of methods to increase accuracy of             |                  |                 |     |             |          |  |  |
| measurements, such as timing over multiple             |                  |                 |     |             |          |  |  |
| oscillations, or use of fiduciary marker, set square   |                  |                 |     |             |          |  |  |
| or plumb line.                                         |                  |                 |     |             |          |  |  |
| (d) Use of a stopwatch or light gates for timing.      |                  |                 |     |             |          |  |  |
| (e) Use of calipers and micrometers for small          |                  |                 |     |             |          |  |  |
| distances, using digital or vernier scales.            |                  |                 |     |             |          |  |  |
| (f) Correctly construct circuits from circuit diagrams |                  |                 |     |             |          |  |  |
| using DC power supplies, cells, and a range of         |                  |                 |     |             |          |  |  |
| circuit components, including those where polarity     |                  |                 |     |             |          |  |  |
| is important.                                          |                  |                 |     |             |          |  |  |
| (g) Design, construct and check circuits using DC      |                  |                 |     |             |          |  |  |
| power supplies, cells, and a range of circuit          |                  |                 |     |             |          |  |  |
| components.                                            |                  |                 |     |             |          |  |  |
| (h) Use a signal generator and oscilloscope,           |                  |                 |     |             |          |  |  |
| including volts/division and time-base.                |                  |                 |     |             |          |  |  |
| (i) Generate and measure waves, using                  |                  |                 |     |             |          |  |  |
| microphone and loudspeaker, or ripple tank, or         |                  |                 |     |             |          |  |  |
| vibration transducer, or microwave/radio wave          |                  |                 |     |             |          |  |  |
| source.                                                |                  |                 |     |             |          |  |  |
| (j) Use of a laser or light source to investigate      |                  |                 |     |             |          |  |  |
| characteristics of light, including interference and   |                  |                 |     |             |          |  |  |
| diffraction.                                           |                  |                 |     |             | 1        |  |  |
| (k) Use of ICT such as computer modelling, or data     |                  |                 |     |             |          |  |  |
| logger with a variety of sensors to collect data, or   |                  |                 |     |             |          |  |  |
| use of software to process data.                       |                  |                 |     |             | 1        |  |  |
| (I) Use of ionising radiation, including detectors.    |                  |                 |     |             |          |  |  |

# **Unit 2: Foundations of Physics**

| Key Words        | Definition |
|------------------|------------|
| Scalar quantity  |            |
| Vector quantity  |            |
| Random Error     |            |
| Systematic Error |            |

| Criteria                                                                      | Before<br>Lesson | After<br>Lesson | EOM | Mock<br>Rev | Revision |
|-------------------------------------------------------------------------------|------------------|-----------------|-----|-------------|----------|
| 2.1.1 Physical quantities                                                     |                  |                 |     |             | •        |
| (a) Explain that some physical quantities consist of                          |                  |                 |     |             |          |
| a numerical magnitude and a unit.                                             |                  |                 |     |             |          |
| (b) Make suitable estimates of physical quantities                            |                  |                 |     |             |          |
| included within this specification.                                           |                  |                 |     |             |          |
| 2.1.2 Units                                                                   |                  |                 |     |             |          |
| (a) Use Système Internationale (S.I.) base                                    |                  |                 |     |             |          |
| quantities and their units – mass (kg), length (m),                           |                  |                 |     |             |          |
| time (s), current (A), temperature (K), amount of                             |                  |                 |     |             |          |
| substance (mol)                                                               |                  |                 |     |             |          |
| (b) Use derived units of S.I. base units Examples:                            |                  |                 |     |             |          |
| momentum (kg m s <sup>-1</sup> ) and density (kg m <sup>-3</sup> )            |                  |                 |     |             |          |
| (c) Use correctly the named units listed in this                              |                  |                 |     |             |          |
| specification as appropriate.                                                 |                  |                 |     |             |          |
| (d) Check the homogeneity of physical equations                               |                  |                 |     |             |          |
| using S.I. base units                                                         |                  |                 |     |             |          |
| (e) Use correctly the following prefixes and their                            |                  |                 |     |             |          |
| symbols to indicate decimal sub-multiples or                                  |                  |                 |     |             |          |
| multiples of units: pico (p), nano (n), micro ( $\mu$ ), milli                |                  |                 |     |             |          |
| (m), centi (c), deci (d), kilo (k), mega (M), giga (G),                       |                  |                 |     |             |          |
| tera (T).                                                                     |                  |                 |     |             |          |
| (f) Use the conventions for correctly labelling graph axes and table columns. |                  |                 |     |             |          |
| 2.2.1 Measurements and Uncertainties                                          |                  |                 |     |             |          |
| (a) Identify and explain systematic errors (including                         |                  | 1               |     |             | T        |
| zero errors) and random errors in measurements.                               |                  |                 |     |             |          |
| (b) Discuss precision and accuracy of                                         |                  |                 |     |             | +        |
| measurements.                                                                 |                  |                 |     |             |          |
| (c) Calculate absolute and percentage                                         |                  |                 |     |             |          |
| uncertainties when data are combined by addition,                             |                  |                 |     |             |          |
| dilocitalitics when data are combined by addition,                            |                  |                 |     | L           |          |

| subtraction, multiplication, division and raising to           |  |  |  |
|----------------------------------------------------------------|--|--|--|
| powers.                                                        |  |  |  |
| (d) Carry out: graphical treatment of errors and               |  |  |  |
| uncertainties; line of best fit; worst line; absolute          |  |  |  |
| and percentage uncertainties; percentage                       |  |  |  |
| difference; error bars.                                        |  |  |  |
| 2.3.1 Scalars and vectors                                      |  |  |  |
| (a) Define <i>scalar</i> and <i>vector</i> quantities and give |  |  |  |
| examples.                                                      |  |  |  |
| (b) Add and subtract vectors.                                  |  |  |  |
| (c) Draw and use a vector triangle to determine the            |  |  |  |
| resultant of two coplanar vectors such as                      |  |  |  |
| displacement, velocity and force.                              |  |  |  |
| (d) Resolve a vector such as displacement, velocity            |  |  |  |
| and force into two perpendicular components;                   |  |  |  |
| $F_x = F \cos \theta$ ; $F_y = F \sin \theta$ .                |  |  |  |

# **Topic 1: Motion**

| Speed                     |  |
|---------------------------|--|
| Velocity                  |  |
| Instantaneous Speed       |  |
| Distance                  |  |
| Displacement              |  |
| Acceleration              |  |
| Force                     |  |
| Average Speed             |  |
| Acceleration of Free-fall |  |
| Reaction Time             |  |
| Thinking Distance         |  |
| Braking Distance          |  |
| Stopping Distance         |  |

|                                                           | RAG              |                 |     |             |          |  |
|-----------------------------------------------------------|------------------|-----------------|-----|-------------|----------|--|
| Criteria                                                  | Before<br>Lesson | After<br>Lesson | ЕОМ | Mock<br>Rev | Revision |  |
| 3.1.1 Kinematics                                          |                  |                 |     |             |          |  |
| (a) Define displacement, instantaneous speed,             |                  |                 |     |             |          |  |
| average speed, velocity and acceleration.                 |                  |                 |     |             |          |  |
| (b) Apply graphical methods to represent                  |                  |                 |     |             |          |  |
| displacement, speed, velocity and acceleration.           |                  |                 |     |             |          |  |
| (c) Determine velocity from the gradient of a             |                  |                 |     |             |          |  |
| displacement against time graph.                          |                  |                 |     |             |          |  |
| (d) Analyse Velocity time graphs to determine             |                  |                 |     |             |          |  |
| acceleration from the gradient and displacement           |                  |                 |     |             |          |  |
| from the area under the graph.                            |                  |                 |     |             |          |  |
| 3.1.2 Linear motion                                       |                  |                 |     |             | _        |  |
| (a i) Select, use and apply the equations of motion       |                  |                 |     |             |          |  |
| for constant acceleration in a straight line, including   |                  |                 |     |             |          |  |
| the motion of bodies falling in the Earth's uniform       |                  |                 |     |             |          |  |
| gravitational field without air resistance.               |                  |                 |     |             |          |  |
| (a ii) Describe techniques and procedures used to         |                  |                 |     |             |          |  |
| investigate the motion and collisions of objects.         |                  |                 |     |             |          |  |
| (b i) Describe and explain acceleration $g$ of free fall. |                  |                 |     |             |          |  |
| (b ii) Describe techniques and procedures used to         |                  |                 |     |             |          |  |
| determine the acceleration of free fall using             |                  |                 |     |             |          |  |
| trapdoor and electromagnet arrangement or light           |                  |                 |     |             |          |  |
| gates and timer.                                          |                  |                 |     |             |          |  |
| (c) Define the terms: reaction time, thinking             |                  |                 |     |             |          |  |
| distance, breaking distance and stopping distance         |                  |                 |     |             |          |  |
| of a vehicle, and analyse problems using these            |                  |                 |     |             |          |  |
| terms.                                                    |                  |                 |     |             |          |  |
| 3.1.3 Projectile motion                                   |                  |                 |     |             |          |  |
| (a) Describe and explain the independence of the          |                  |                 |     |             |          |  |
| vertical and horizontal motion of a projectile.           |                  |                 |     |             |          |  |
| (b) Analyse the two-dimensional motion of a               |                  |                 |     |             |          |  |
| projectile with constant velocity in one direction and    |                  |                 |     |             |          |  |
| constant acceleration in a perpendicular direction.       |                  |                 |     |             |          |  |

# **Topic 2 – Forces in Action**

| Key Words            | Definition |
|----------------------|------------|
| Newton               |            |
| Weight               |            |
| Tension              |            |
| normal contact force |            |
| Upthrust             |            |
| Friction             |            |
| Terminal Velocity    |            |
| Centre of Mass       |            |
| Centre of Gravity    |            |
| Volume               |            |
| Couple               |            |
| Torque               |            |
| Force                |            |
| Drag                 |            |
| Mass                 |            |
| Principle of moments |            |
| Pressure             |            |
| Moment               |            |
| Fluid                |            |
| Density              |            |

| Area                                                                                 |                            |                  |                 |          |             |          |
|--------------------------------------------------------------------------------------|----------------------------|------------------|-----------------|----------|-------------|----------|
|                                                                                      |                            |                  |                 | RAG      |             |          |
| Criteria                                                                             |                            | Before<br>Lesson | After<br>Lesson | EOM      | Mock<br>Rev | Revision |
| 3.2.1 Dynamics                                                                       |                            |                  |                 |          | •           |          |
| (a) Recall and solve problem                                                         | s using the                |                  |                 |          |             |          |
| relationship: net force = mass                                                       | s x acceleration (F =      |                  |                 |          |             |          |
| ma) appreciating that acceler                                                        | ation and the net force    |                  |                 |          |             |          |
| are always in the same direct                                                        | tion.                      |                  |                 |          |             |          |
| (b) Define the Newton.                                                               |                            |                  |                 |          |             |          |
| (c) <b>Recall</b> and use the relation acceleration of free fall ( $W = \frac{1}{2}$ |                            |                  |                 |          |             |          |
| (d) Define the terms: <i>tension</i> ,                                               |                            |                  |                 |          |             |          |
| upthrust and friction.                                                               |                            |                  |                 |          |             |          |
| (e) Be able to draw and unde                                                         | erstand free body          |                  |                 |          |             |          |
| diagrams.                                                                            |                            |                  |                 |          |             |          |
| (f) Describe and explain one                                                         |                            |                  |                 |          |             |          |
| motion under a constant force                                                        |                            |                  |                 |          |             |          |
| 3.2.2 Motion with Non-Unifo                                                          |                            |                  |                 |          | I           |          |
| (a) Explain that an object trav                                                      | •                          |                  |                 |          |             |          |
| experiences a resistive or a f                                                       | rictional force known as   |                  |                 |          |             |          |
| drag.                                                                                | at the magnitude of the    |                  |                 |          |             |          |
| (b) State the factors that affecting force for an object trave                       | •                          |                  |                 |          |             |          |
| drag force for an object trave                                                       |                            |                  |                 |          |             |          |
| (c) Describe the motion of ob                                                        |                            |                  |                 |          |             |          |
| gravitational field in the prese<br>(d) State that the weight of ar                  |                            |                  |                 |          |             |          |
| gravitational force acting on t                                                      | -                          |                  |                 |          |             |          |
| (d i) Define and explain the te                                                      |                            |                  |                 |          |             |          |
| (d ii) Describe techniques and                                                       |                            |                  |                 |          |             |          |
| determine terminal velocity in                                                       | •                          |                  |                 |          |             |          |
| 3.2.3 Equilibrium                                                                    | i iididə.                  |                  | l               |          |             |          |
| (a) Define and apply the mon                                                         | nent of a force            |                  | T               |          |             |          |
| (b) Explain that a <i>couple</i> is a                                                |                            |                  |                 |          |             |          |
| to produce rotation only.                                                            | pair or roross that torids |                  |                 |          |             |          |
| Define and apply the <i>torque</i> of                                                | of a couple                |                  |                 |          |             |          |
| (c) Apply the principle of mon                                                       |                            |                  |                 |          |             |          |
| (d) Define the terms: centre of                                                      |                            |                  |                 |          |             |          |
| gravity.                                                                             |                            |                  |                 |          |             |          |
| Describe a simple experimen                                                          | t to determine the         |                  |                 |          |             |          |
| centre of gravity of an object.                                                      |                            |                  |                 |          |             |          |
| (e) Explain that both the net force and net moment                                   |                            |                  |                 |          |             |          |
| on an extended object in equilibrium is zero.                                        |                            |                  |                 |          |             |          |
| (f) Draw and use a triangle of                                                       |                            |                  |                 |          |             |          |
| equilibrium of three coplanar                                                        | <u>-</u>                   |                  |                 |          |             |          |
| in an object.                                                                        |                            |                  |                 |          |             |          |
| 3.2.4 Density and Pressure                                                           |                            |                  |                 |          |             |          |
| (a) Select and use the equati                                                        |                            |                  |                 |          |             |          |
| (b) Select and use the equati                                                        | on for pressure for        |                  |                 | <u> </u> |             |          |
| solids liquids and gases, $p =$                                                      | F/A, where F is the        |                  |                 |          |             |          |
| force normal to the area A                                                           |                            |                  |                 |          |             |          |

# Topic 3 – Work, Energy and Power

| Key Words                      | Definition |     |
|--------------------------------|------------|-----|
| Watt                           |            |     |
| Sankey diagram                 |            |     |
| Efficiency                     |            |     |
| Gravitational potential energy |            |     |
| Kinetic energy                 |            |     |
| Energy                         |            |     |
| Conservation of energy         |            |     |
| Work done                      |            |     |
| Sound energy                   |            |     |
| Joule                          |            |     |
| Chemical energy                |            |     |
| Internal energy                |            |     |
| Nuclear energy                 |            |     |
| Electromagnetic wave energy    |            |     |
| Power                          |            |     |
| Criteria                       |            | RAG |

|                                                         | Before<br>Lesson | After<br>Lesson | EOM | Mock Rev | Revision |
|---------------------------------------------------------|------------------|-----------------|-----|----------|----------|
| 3.3.1 Work and conservation of energy                   |                  |                 |     |          |          |
| (a) Define work done by a force and the joule.          |                  |                 |     |          |          |
| (b) Calculate the work done by a force using $W =$      |                  |                 |     |          |          |
| $Fx$ and $W = Fx \cos \theta$ .                         |                  |                 |     |          |          |
| (c) State the principle of conservation of energy.      |                  |                 |     |          |          |
| (d) Describe examples of energy in different            |                  |                 |     |          |          |
| forms, its conversion and conservation, and             |                  |                 |     |          |          |
| apply the principle of energy conservation to           |                  |                 |     |          |          |
| simple examples.                                        |                  |                 |     |          |          |
| (e) Apply the idea that work done is equal to the       |                  |                 |     |          |          |
| transfer of energy to solve problems.                   |                  |                 |     |          |          |
| 3.3.2 Kinetic and potential energies                    |                  |                 |     |          |          |
| (a) <b>Recall</b> and apply the equation for kinetic    |                  |                 |     |          |          |
| energy, $E_k = \frac{1}{2} mv^2$ .                      |                  |                 |     |          |          |
| Derive this equation from first principles.             |                  |                 |     |          |          |
| (b) <b>Recall</b> and apply the equation for the change |                  |                 |     |          |          |
| in gravitational potential energy near the Earth's      |                  |                 |     |          |          |
| surface, $E_p = mgh$ .                                  |                  |                 |     |          |          |
| Derive this equation from first principles.             |                  |                 |     |          |          |
| (c) Analyse problems where there is an                  |                  |                 |     |          |          |
| exchange between gravitational potential energy         |                  |                 |     |          |          |
| and kinetic energy.                                     |                  |                 |     |          |          |
| 3.3.3 Power                                             | T                | 1               |     | T        |          |
| (a) Define <i>power</i> as the rate of work done,       |                  |                 |     |          |          |
| P=W/t, and the <i>Watt</i> .                            |                  |                 |     |          |          |
| (b) Use the equation P=Fv                               |                  |                 |     |          |          |
| Derive this equation using first principles.            |                  |                 |     |          |          |
| (c) Calculate power when solving problems.              |                  |                 |     |          |          |
| (d) Select and apply the relationship for               |                  |                 |     |          |          |
| efficiency, efficiency = useful output energy / total   |                  |                 |     |          |          |
| input energy x 100%.                                    |                  |                 |     |          |          |

# **Topic 4 – Materials**

| Key Words                | Definition |
|--------------------------|------------|
| Ductile                  |            |
| Stress                   |            |
| Strain                   |            |
| Brittle                  |            |
| Ultimate tensile stress  |            |
| Polymeric                |            |
| Elastic potential energy |            |
| Plastic                  |            |
| Young's Modulus          |            |
| Elastic deformation      |            |
| Hooke's Law              |            |
| Elastic limit            |            |
| Tensile forces           |            |
| Compressive forces       |            |
| Elastic                  |            |
| Extension                |            |

|                                                                                         | RAG              |                 |     |             |          |  |
|-----------------------------------------------------------------------------------------|------------------|-----------------|-----|-------------|----------|--|
| Criteria                                                                                | Before<br>Lesson | After<br>Lesson | ЕОМ | Mock<br>Rev | Revision |  |
| 3.4.1 Springs                                                                           |                  |                 |     | 1.00        |          |  |
| (a) Describe how deformation is caused by a                                             |                  |                 |     |             |          |  |
| force in one dimension and can be tensile or                                            |                  |                 |     |             |          |  |
| compressive, and can cause extension or                                                 |                  |                 |     |             |          |  |
| compression.                                                                            |                  |                 |     |             |          |  |
| (b) Recall and use Hooke's Law.                                                         |                  |                 |     |             |          |  |
| (c) Select and apply the equation $F = kx$ , where $k$                                  |                  |                 |     |             |          |  |
| is the force constant of the spring or the wire.                                        |                  |                 |     |             |          |  |
| (d i) Draw and interpret Force-Extension (or                                            |                  |                 |     |             |          |  |
| compression) graphs for spring and wires.                                               |                  |                 |     |             |          |  |
| Describe the behaviour of springs and wires in                                          |                  |                 |     |             |          |  |
| terms of force, extension, elastic limit, Hooke's                                       |                  |                 |     |             |          |  |
| Law and the force constant (i.e. force per unit                                         |                  |                 |     |             |          |  |
| extension or compression).                                                              |                  |                 |     |             |          |  |
| (d ii) Describe and carry out techniques and                                            |                  |                 |     |             |          |  |
| procedures used to investigate force–extension                                          |                  |                 |     |             |          |  |
| characteristics for arrangements which may                                              |                  |                 |     |             |          |  |
| include springs, rubber bands, polythene strips.  3.4.2 Mechanical Properties of Matter |                  |                 |     |             |          |  |
| (a) Determine the area under a force against                                            |                  |                 |     |             |          |  |
| extension (or compression) graph to find the                                            |                  |                 |     |             |          |  |
| work done by the force.                                                                 |                  |                 |     |             |          |  |
| (b) Select and use the equations for elastic                                            |                  |                 |     |             |          |  |
| potential energy $E = \frac{1}{2} Fx$ and $E = \frac{1}{2} kx^2$ .                      |                  |                 |     |             |          |  |
| (c) Define and use the terms <i>stress</i> , <i>strain</i> , and                        |                  |                 |     |             |          |  |
| ultimate tensile strength (breaking stress).                                            |                  |                 |     |             |          |  |
| (d i) Define Young's Modulus as                                                         |                  |                 |     |             |          |  |
| tensile stress/tensile strain, $E = \delta/\epsilon$                                    |                  |                 |     |             |          |  |
| (d ii) Describe experiments to determine the                                            |                  |                 |     |             |          |  |
| Young modulus of a metal.                                                               |                  |                 |     |             |          |  |
| (e) Describe the shapes of the stress against                                           |                  |                 |     |             |          |  |
| strain graphs for typical ductile, brittle and                                          |                  |                 |     |             |          |  |
| polymeric materials.                                                                    |                  |                 |     |             |          |  |
| (f) Define the terms <i>elastic deformation</i> and                                     |                  |                 |     |             |          |  |
| plastic deformation of a material.                                                      |                  |                 |     |             |          |  |

# **Topic 5 – Newton's Laws of Motion and Momentum**

| Key Words                             | Definition |
|---------------------------------------|------------|
| Newton's First Law                    |            |
| Newton's Second Law                   |            |
| Newton's Third Law                    |            |
| Linear Momentum                       |            |
| Impulse of a Force                    |            |
| Principle of Conservation of Momentum |            |
| Elastic Collision                     |            |
| Inelastic Collision                   |            |

|                                                             | RAG              |                 |     |             |          |  |
|-------------------------------------------------------------|------------------|-----------------|-----|-------------|----------|--|
| Criteria                                                    | Before<br>Lesson | After<br>Lesson | EOM | Mock<br>Rev | Revision |  |
| 3.5.1 Newton's Laws of Motion                               |                  |                 |     |             |          |  |
| (a) Recall and use Newton's three laws of motion            |                  |                 |     |             |          |  |
| (b) Define the term <i>linear momentum</i> ; p = mv;        |                  |                 |     |             |          |  |
| Understand the vector nature of momentum.                   |                  |                 |     |             |          |  |
| (c) Select and use the equation:                            |                  |                 |     |             |          |  |
| net force = rate of change of momentum;                     |                  |                 |     |             |          |  |
| $F = \Delta p / \Delta t$                                   |                  |                 |     |             |          |  |
| (F = ma is a special case of this equation.)                |                  |                 |     |             |          |  |
| (d) Defie the term <i>impulse of a force</i> ;              |                  |                 |     |             |          |  |
| impulse = F∆t                                               |                  |                 |     |             |          |  |
| (e) Calculate the impulse of a force as the area            |                  |                 |     |             |          |  |
| under a force-time graph.                                   |                  |                 |     |             |          |  |
| 3.5.2 Collisions                                            |                  |                 |     |             | _        |  |
| (a) Describe and explain the principle of                   |                  |                 |     |             |          |  |
| conservation of momentum.                                   |                  |                 |     |             |          |  |
| (b) Describe and explain collisions and                     |                  |                 |     |             |          |  |
| interaction of bodies in one dimension and in two           |                  |                 |     |             |          |  |
| dimensions.                                                 |                  |                 |     |             |          |  |
| (c) Define the terms <i>perfectly elastic collision</i> and |                  |                 |     |             |          |  |
| inelastic collision.                                        |                  |                 |     |             |          |  |

## **Unit 4: Electrons, Waves & Photons**

# **Topic 1 – Charge and Current**

| Electric Current - Key<br>Words | Definition |
|---------------------------------|------------|
| Charge                          |            |
| Coulomb                         |            |
| Current                         |            |
| Conductor                       |            |
| Semi-conductor                  |            |
| Insulator                       |            |
| Conservation of charge          |            |
| Drift velocity                  |            |
| Ampere                          |            |

|                                                                 | RAG              |                 |     |          |          |  |  |
|-----------------------------------------------------------------|------------------|-----------------|-----|----------|----------|--|--|
| Criteria                                                        | Before<br>Lesson | After<br>Lesson | EOM | Mock Rev | Revision |  |  |
| 4.1.1 Charge                                                    |                  |                 |     |          |          |  |  |
| (a) Explain that electric current is the rate of                |                  |                 |     |          |          |  |  |
| flow of charge; $I = \Delta Q/\Delta t$                         |                  |                 |     |          |          |  |  |
| (b) Define the coulomb.                                         |                  |                 |     |          |          |  |  |
| (c) Recall and use the elementary charge                        |                  |                 |     |          |          |  |  |
| $e = 1.6 \text{ x} 10^{-19}$ . (an electron as a charge of $-e$ |                  |                 |     |          |          |  |  |
| and a proton +e)                                                |                  |                 |     |          |          |  |  |
| (d) Recall that the net charge on a particle or                 |                  |                 |     |          |          |  |  |
| an object is quantised as a multiple of e.                      |                  |                 |     |          |          |  |  |
| (e) Explain that electric current in a metal is                 |                  |                 |     |          |          |  |  |
| due to the movement of electrons, whereas in                    |                  |                 |     |          |          |  |  |
| an electrolyte the current is due to the                        |                  |                 |     |          |          |  |  |
| movement of ions.                                               |                  |                 |     |          |          |  |  |
| (f) Explain what is meant by conventional                       |                  |                 |     |          |          |  |  |
| current and electron flow.                                      |                  |                 |     |          |          |  |  |
| (g) Describe Kirchhoff's first law and appreciate               |                  |                 |     |          |          |  |  |
| that this is a consequence of conservation of                   |                  |                 |     |          |          |  |  |
| charge. 4.1.2 Mean Drift Velocity                               |                  |                 |     |          |          |  |  |
| (a) State what is meant by the term <i>mean drift</i>           |                  |                 |     |          |          |  |  |
| velocity of charge carriers.                                    |                  |                 |     |          |          |  |  |
| (b) Select and use the equation I = Anev.                       |                  |                 |     |          |          |  |  |
| (c) Describe the difference between                             |                  |                 |     |          |          |  |  |
| conductors, semiconductors and insulators in                    |                  |                 |     |          |          |  |  |
| terms of the number density <i>n</i> .                          |                  |                 |     |          |          |  |  |
| terms of the frame of deficity in                               |                  | l .             |     |          |          |  |  |

## **Unit 4: Electrons, Waves & Photons**

## **Topic 2 – Energy, Power and Resistance**

| Key Words            | Definition |
|----------------------|------------|
| Terminal             |            |
| LDR                  |            |
| Voltmeter            |            |
| Coulomb              |            |
| Component            |            |
| Ampere               |            |
| Current              |            |
| Parallel             |            |
| Electromotive force  |            |
| Thermistor           |            |
| Fixed resistor       |            |
| Cell                 |            |
| Charge               |            |
| Potential difference |            |
| Series               |            |
| Diode                |            |

| Fuse               |  |
|--------------------|--|
| Battery            |  |
| Volt               |  |
| Watt               |  |
| LED                |  |
| Ammeter            |  |
| Energy             |  |
| Power              |  |
| Ohm                |  |
| Resistance         |  |
| Resistor           |  |
| I-V characteristic |  |
| Semiconductor      |  |
| Ohm's Law          |  |
| Resistivity        |  |
| Joule              |  |
| Kilo-watt hour     |  |
| Sankey diagram     |  |

|                                                            | RAG              |                 |     |          |          |
|------------------------------------------------------------|------------------|-----------------|-----|----------|----------|
| Criteria                                                   | Before<br>Lesson | After<br>Lesson | EOM | Mock Rev | Revision |
| 4.2.1 Circuit Symbols                                      |                  |                 |     |          |          |
| (a) Recall and use appropriate circuit symbols             |                  |                 |     |          |          |
| as detailed.                                               |                  |                 |     |          |          |
| (b) Interpret and draw circuit diagrams using              |                  |                 |     |          |          |
| these symbols.                                             |                  |                 |     |          |          |
| 4.2.2 E.m.f. and p.d.                                      |                  |                 | 1   |          |          |
| (a) Define potential difference (p.d.), the volt.          |                  |                 |     |          |          |
| (b) Define electromotive force (e.m.f) of a                |                  |                 |     |          |          |
| source such as a cell or a power supply.                   |                  |                 |     |          |          |
| (c) Describe the difference between e.m.f. and             |                  |                 |     |          |          |
| p.d. in terms of energy transfer.                          |                  |                 |     |          |          |
| (d) Select and use the equation <i>W</i> = <i>VQ</i> , and |                  |                 |     |          |          |
| $W=\varepsilon Q$ .                                        |                  |                 |     |          |          |
| (e) Energy transfer eV = 1/2 mv² for electrons             |                  |                 |     |          |          |
| and other charged particles.                               |                  |                 |     |          |          |
| 4.2.3 Resistance                                           |                  |                 | ı   |          |          |
| (a) Define <i>resistance</i> and the <i>Ohm</i> .          |                  |                 |     |          |          |
| Recall and use the equation for resistance                 |                  |                 |     |          |          |
| R = V/I.                                                   |                  |                 |     |          |          |
| (b) State and use Ohm's law.                               |                  |                 |     |          |          |
| (c i) Describe the <i>I–V</i> characteristics of a         |                  |                 |     |          |          |
| resistor at constant temperature, filament lamp,           |                  |                 |     |          |          |
| thermistor, diode and light-emitting diode                 |                  |                 |     |          |          |
| (LED).                                                     |                  |                 |     |          |          |
| (c ii) Describe an experiment to obtain the <i>I–V</i>     |                  |                 |     |          |          |
| characteristics for a range of Ohmic and non-              |                  |                 |     |          |          |
| ohmic components.                                          |                  |                 |     |          |          |
| (d) Describe the variation of resistance with              |                  |                 |     |          |          |
| light intensity. Describe the uses and benefits            |                  |                 |     |          |          |
| of using light-emitting diodes (LEDs).  4.2.4 Resistivity  |                  |                 |     |          |          |
| (a i) Define <i>resistivity</i> of a material. Select and  |                  |                 | 1   | 1        |          |
| use the equation $R = \rho L/A$ .                          |                  |                 |     |          |          |
| (a ii) Describe and carry out techniques and               |                  |                 |     |          |          |
| procedures to determine the resistivity of a               |                  |                 |     |          |          |
| material.                                                  |                  |                 |     |          |          |
| (b) Describe how the resistivity of metals and             |                  |                 |     |          |          |
| semiconductors are affected by temperature.                |                  |                 |     |          |          |
| (c) Describe how the resistance of a pure metal            |                  |                 |     |          |          |
| wire and of a negative temperature coefficient             |                  |                 |     |          |          |
| (NTC) thermistor is affected by temperature.               |                  |                 |     |          |          |
| 4.2.5 Power                                                |                  |                 |     |          |          |
| (a) Select and use the power equations $P = IV$ ,          |                  |                 |     |          |          |
| $P = I^2 R$ and $P = V^2 / R$ .                            |                  |                 |     |          |          |
| (b) Select and use the equation W = VIt                    |                  |                 |     |          |          |
| (c) Define the <i>kilowatt-hour</i> (kWh) as a unit of     |                  |                 |     |          |          |
| energy. Calculate energy in kWh and the cost               |                  |                 |     |          |          |
| of this energy when solving problems.                      |                  |                 |     |          |          |

### **Unit 4: Electrons, Waves & Photons**

### **Topic 3 – Electrical Circuits**

| Key Words             | Definition |
|-----------------------|------------|
| Series circuit        |            |
| Parallel circuit      |            |
| Internal resistance   |            |
| Kirchoff's first law  |            |
| Kirchoff's second law |            |
| Potential divider     |            |
| Thermistor            |            |
| LDR                   |            |

|                                                                                | RAG    |        |     |          |            |  |
|--------------------------------------------------------------------------------|--------|--------|-----|----------|------------|--|
| Criteria                                                                       | Before | After  | EOM | Mock Rev | Revision   |  |
| 4.3.1 Series and Parallel Circuits                                             | Lesson | Lesson |     | 1        | 1107101011 |  |
| (a) State Kirchoff's second law and appreciate                                 |        |        |     |          |            |  |
| that this is a consequence of conservation of                                  |        |        |     |          |            |  |
| energy.                                                                        |        |        |     |          |            |  |
| (b) Apply Kirchoff's first and second laws to                                  |        |        |     |          |            |  |
| circuits.                                                                      |        |        |     |          |            |  |
| (c) Select and use the equation for the total                                  |        |        |     |          |            |  |
| resistance of two or more resistors in series;                                 |        |        |     |          |            |  |
| $R = R_1 + R_2 +$                                                              |        |        |     |          |            |  |
| (d) Select and use the equation for the total                                  |        |        |     |          |            |  |
| resistance of two or more resistors in parallel;                               |        |        |     |          |            |  |
| $1/R = 1/R_1 + 1/R_2 +$                                                        |        |        |     |          |            |  |
| (e) Solve circuit problems involving series and                                |        |        |     |          |            |  |
| parallel circuits with various components.                                     |        |        |     |          |            |  |
| (f) Solve circuit problems involving series and                                |        |        |     |          |            |  |
| parallel circuits with one or more sources of                                  |        |        |     |          |            |  |
| e.m.f.                                                                         |        |        |     |          |            |  |
| 4.3.2 Internal Resistance                                                      | T      | T T    |     |          |            |  |
| (a) Explain that all sources of e.m.f. have an                                 |        |        |     |          |            |  |
| internal resistance.                                                           |        |        |     |          |            |  |
| (b) Explain the meaning of the term <i>terminal</i>                            |        |        |     |          |            |  |
| p.d. and 'lost volts'                                                          |        |        |     |          |            |  |
| (c i) Select and use the equations $\varepsilon = I(R + r)$                    |        |        |     |          |            |  |
| and $\varepsilon = V + Ir$ .                                                   |        |        |     |          |            |  |
| (c ii) Desribe and carry out techniques and                                    |        |        |     |          |            |  |
| procedures used to determine the internal                                      |        |        |     |          |            |  |
| resistance of a chemical cell or other source of                               |        |        |     |          |            |  |
| e.m.f.                                                                         |        |        |     |          |            |  |
| <b>4.3.3 Potential Dividers</b> (a) Draw and set up a simple potential divider | I      |        |     |          |            |  |
| circuit.                                                                       |        |        |     |          |            |  |
| (b) Explain how a potential divider circuit can                                |        |        |     |          |            |  |
| be used to produce a variable p.d.                                             |        |        |     |          |            |  |
| (c i) Select and use the potential divider                                     |        |        |     |          |            |  |
| equations $V_{out} = (R_2/(R_1 + R_2)) \times V_{in}$ and                      |        |        |     |          |            |  |
| $V_1/V_2 = R_1/R_2$ .                                                          |        |        |     |          |            |  |
| (c ii) Describe and carry out the techniques                                   |        |        |     |          |            |  |
| and procedures used to investigate potential                                   |        |        |     |          |            |  |
| divider circuits which may include a sensor                                    |        |        |     |          |            |  |
| such as a thermistor or an LDR.                                                |        |        |     |          |            |  |

### **Unit 3: Electrons, Waves & Photons**

### Topic 4 – Waves

| Waves - Key Words    | Definition |
|----------------------|------------|
| Transverse wave      |            |
| Longitudinal wave    |            |
| Displacement         |            |
| Amplitude            |            |
| Wavelength           |            |
| Frequency            |            |
| Period               |            |
| Phase difference     |            |
| Radian               |            |
| Progressive wave     |            |
| Electromagnetic wave |            |
| Intensity            |            |
| Reflection           |            |

| Refraction            |  |
|-----------------------|--|
| Diffraction           |  |
| Plane polarised wave  |  |
| Malus's law           |  |
| Strain analysis       |  |
| Superposition         |  |
| Coherence             |  |
| Interference          |  |
| Diffraction grating   |  |
| Stationary wave       |  |
| Node                  |  |
| Antinode              |  |
| Fundamental frequency |  |
| Harmonic              |  |

| RAG                                                         |                  |                 |     |          |          |
|-------------------------------------------------------------|------------------|-----------------|-----|----------|----------|
| Criteria                                                    | Before<br>Lesson | After<br>Lesson | EOM | Mock Rev | Revision |
| 4.4.1 Wave motion                                           |                  |                 |     |          |          |
| (a) Describe and distinguish between                        |                  |                 |     |          |          |
| progressive longitudinal and transverse waves.              |                  |                 |     |          |          |
| (b i) Define and use the terms displacement,                |                  |                 |     |          |          |
| amplitude, wavelength, period, phase                        |                  |                 |     |          |          |
| difference, frequency and speed of a wave.                  |                  |                 |     |          |          |
| (b ii) Describe and carry out techniques and                |                  |                 |     |          |          |
| procedure to use an oscilloscope to determine               |                  |                 |     |          |          |
| frequency.                                                  |                  |                 |     |          |          |
| (c) Select and use the equation f = 1/T                     |                  |                 |     |          |          |
| (d) Select and use the wave equation $v = f\lambda$         |                  |                 |     |          |          |
| (e) Draw and interpret graphical                            |                  |                 |     |          |          |
| representations of transverse and longitudinal              |                  |                 |     |          |          |
| waves.                                                      |                  |                 |     |          |          |
| (f i) explain what is meant by reflection,                  |                  |                 |     |          |          |
| refraction, polarisation and diffraction of all             |                  |                 |     |          |          |
| waves.                                                      |                  |                 |     |          |          |
| (f ii) Describe and carry out techniques and                |                  |                 |     |          |          |
| procedures used to demonstrate wave effects                 |                  |                 |     |          |          |
| using a ripple tank.                                        |                  |                 |     |          |          |
| (f iii) Describe and carry out techniques and               |                  |                 |     |          |          |
| procedures used to observe polarising effects               |                  |                 |     |          |          |
| using microwaves and light.                                 |                  |                 |     |          |          |
| (g) Define <i>intensity of a progressive wave</i> and       |                  |                 |     |          |          |
| use the equation I = P/A;                                   |                  |                 |     |          |          |
| intensity ∞ (amplitude) <sup>2</sup>                        |                  |                 |     |          |          |
| 2.4.2 Electromagnetic Waves                                 |                  | l               | T   | T        |          |
| (a) Describe the properties of electromagnetic              |                  |                 |     |          |          |
| waves. Describe the electromagnetic                         |                  |                 |     |          |          |
| spectrum. (b) State the orders of magnitude of the          |                  |                 |     |          |          |
| wavelengths of the different regions of the                 |                  |                 |     |          |          |
| electromagnetic spectrum from radio waves to                |                  |                 |     |          |          |
| gamma waves.                                                |                  |                 |     |          |          |
| (c) Explain what is meant by plane polarised                |                  |                 |     |          |          |
| waves and understand the polarisation of                    |                  |                 |     |          |          |
| electromagnetic waves.                                      |                  |                 |     |          |          |
| (d i) Describe and explain the refraction of                |                  |                 |     |          |          |
| light. Select and use the equation for refractive           |                  |                 |     |          |          |
| index; n=c/v.                                               |                  |                 |     |          |          |
| Recall that $n \sin \theta = \text{constant at a boundary}$ |                  |                 |     |          |          |
| where $\theta$ is the angle to the normal.                  |                  |                 |     |          |          |
| (d ii) Describe and carry out techniques and                |                  |                 |     |          |          |
| procedures used to investigate refraction and               |                  |                 |     |          |          |
| TIR of light using ray boxes, including                     |                  |                 |     |          |          |
| transparent rectangular and semi-circular                   |                  |                 |     |          |          |
| blocks.                                                     |                  |                 |     |          |          |
| (e) Describe and explain TIR for light including            |                  |                 |     |          |          |
| the critical angle; sin C = 1/n                             |                  |                 |     |          |          |
| 4.4.3 Superposition                                         |                  |                 | ı   |          |          |
| (a i) State and use the principle of                        |                  |                 |     |          |          |
| superposition of waves                                      |                  |                 |     |          |          |

|                                                          | 1      |      |      |
|----------------------------------------------------------|--------|------|------|
| (a ii) Describe and carry out techniques and             |        |      |      |
| procedures used for superposition experiments            |        |      |      |
| using sound, light and microwaves.                       |        |      |      |
| (b) Apply graphical methods to illustrate the            |        |      |      |
| principle of superposition.                              |        |      |      |
| (c) Explain the terms interference, coherence,           |        |      |      |
| path difference and phase difference.                    |        |      |      |
| (d) State what is meant by constructive                  |        |      |      |
| interference and destructive interference, and           |        |      |      |
| explain them in terms of path and phase                  |        |      |      |
| difference.                                              |        |      |      |
| (e) Describe experiments that demonstrate                |        |      |      |
| two-source interference using sound, light and           |        |      |      |
| microwaves.                                              |        |      |      |
| (f) Describe the Young double-slit experiment            |        |      |      |
| using visible light and explain how it is a              |        |      |      |
| classical confirmation of the wave-nature of             |        |      |      |
| light.                                                   |        |      |      |
| (g i) Select and use the equation $\lambda = ax/D$ for   |        |      |      |
| electromagnetic waves.                                   |        |      |      |
| (g ii) Describe techniques and procedures                |        |      |      |
| used to determine the wavelength of light using          |        |      |      |
| (1) a double slit, and (2) a diffraction grating.        |        |      |      |
| 4.4.4 Stationary Waves                                   |        |      |      |
| (a) Describe experiments to demonstrate                  |        |      |      |
| stationary waves using microwaves, stretched             |        |      |      |
| strings and air columns.                                 |        |      |      |
| (b) Explain the formation of stationary                  |        |      |      |
| (standing) waves using graphical methods.                |        |      |      |
| (c) Describe the similarities and differences            |        |      |      |
| between progressive and stationary waves.                |        |      |      |
| (d) Define the terms <i>nodes</i> and <i>antinodes</i> . |        |      |      |
| (e i) determine the stationary wave patterns for         |        |      |      |
| stretched string and air columns in closed and           |        |      |      |
| open pipes.                                              |        |      |      |
| (e ii) Describe and carry out techniques and             |        |      |      |
| procedures used to determine the speed of                |        |      |      |
| sound in air by formation of stationary waves in         |        |      |      |
| a resonance tube.                                        |        |      |      |
| (f) use the equation:                                    | Τ      |      |      |
| separation between adjacent nodes (or                    |        |      |      |
| antinodes) = $\lambda/2$                                 |        |      |      |
| (g) define and use the terms fundamental                 | $\top$ |      |      |
| mode of vibration and harmonics.                         |        |      |      |
|                                                          |        | <br> | <br> |

### <u>Unit 4 Electrons, Waves & Photons: Topic 5 – Quantum Physics</u>

| Key Words             | Definition |
|-----------------------|------------|
| Photon                |            |
| Planck's Constant     |            |
| Electronvolt          |            |
| LED                   |            |
| Photoelectric effect  |            |
| Stopping potential    |            |
| Threshold frequency   |            |
| Wave-particle duality |            |
| De Broglie wavelength |            |
| Spectra               |            |
| Emission spectra      |            |
| Absorption spectra    |            |

| Work function |  |  |
|---------------|--|--|
|               |  |  |

|                                                    | RAG    |        |     |          |            |
|----------------------------------------------------|--------|--------|-----|----------|------------|
| Criteria                                           | Before | After  | EOM | Mock Rev | Revision   |
| 4.5.1 Photons                                      | Lesson | Lesson |     | 1        | 1101101011 |
| (a) Describe the particulate nature (photon        |        |        |     |          |            |
| model) of electromagnetic radiation.               |        |        |     |          |            |
| (b) State that a photon is a quantum of energy     |        |        |     |          |            |
| of electromagnetic radiation.                      |        |        |     |          |            |
| (c) select and use the equations for the energy    |        |        |     |          |            |
| of a photon: $E = hf$ and $E = hc/\lambda$         |        |        |     |          |            |
| (d) Define and use the electronvolt (eV) as a      |        |        |     |          |            |
| unit of energy.                                    |        |        |     |          |            |
| (e i) Describe an experiment using LEDs to         |        |        |     |          |            |
| estimate the Planck constant <i>h</i> using the    |        |        |     |          |            |
| equation of $eV = hc/\lambda$ (no knowledge of     |        |        |     |          |            |
| semiconductor theory is expected)                  |        |        |     |          |            |
| (e ii) Determine the Planck constant using         |        |        |     |          |            |
| different coloured LEDs.                           |        |        |     |          |            |
| 4.5.2 The photoelectric effect                     |        |        |     |          |            |
| (a i) Describe and explain the phenomenon of       |        |        |     |          |            |
| the photoelectric effect.                          |        |        |     |          |            |
| (a ii) Demonstrate the photoelectric effect        |        |        |     |          |            |
| using a gold leaf electroscope and a zinc plate.   |        |        |     |          |            |
| (b) Describe the photoelectric effect in terms of  |        |        |     |          |            |
| a one-to-one interaction between a photon and      |        |        |     |          |            |
| a surface electron.                                |        |        |     |          |            |
| (c) Select, explain and use Einstein's             |        |        |     |          |            |
| photoelectric equation $hf = \phi + KE_{max}$      |        |        |     |          |            |
| (d) Define and use the terms work function and     |        |        |     |          |            |
| threshold frequency.                               |        |        |     |          |            |
| (e) Explain why the maximum kinetic energy of      |        |        |     |          |            |
| the electrons is independent of the intensity of   |        |        |     |          |            |
| the incident radiation.                            |        |        |     |          |            |
| (f) Explain why the photoelectric current in a     |        |        |     |          |            |
| photocell circuit is proportional to intensity of  |        |        |     |          |            |
| the incident radiation.                            |        |        |     |          |            |
| 4.5.3 Wave-particle duality                        |        |        |     |          |            |
| (a) Explain electron diffraction as evidence for   |        |        |     |          |            |
| the wave nature of particles like electrons.       |        |        |     |          |            |
| (b) Explain that electrons travelling through      |        |        |     |          |            |
| polycrystalline graphite will be diffracted by the |        |        |     |          |            |
| atoms and the spacing between the atoms.           |        |        |     |          |            |
| (c) Select and apply the de Broglie equation       |        |        |     |          |            |
| $\lambda = h/p = h/mv$                             |        |        |     |          |            |

### **5.1 Thermal Physics**

| Key Words                 | Definition |
|---------------------------|------------|
| Temperature               |            |
| Equilibrium               |            |
| Celcius                   |            |
| Kelvin                    |            |
| Brownian Motion           |            |
| Internal Energy           |            |
| Specific Heat Capacity    |            |
| Specific Latent Heat      |            |
| Avogadro Constant         |            |
| Ideal Gas                 |            |
| Boyle's Law               |            |
| Root Mean Square<br>Speed |            |

|--|

|            |                                                                | RAG              |                 |     | l .      |          |
|------------|----------------------------------------------------------------|------------------|-----------------|-----|----------|----------|
|            | Criteria                                                       | Before<br>Lesson | After<br>Lesson | ЕОМ | Mock Rev | Revision |
| 5.         | Thermal Physics                                                |                  |                 |     |          |          |
| (a)        | Describe thermal equilibrium                                   |                  |                 |     |          |          |
| (b)        | Describe absolute scale of temperature (i.e. the               |                  |                 |     |          |          |
|            | thermodynamic scale) that does not depend on                   |                  |                 |     |          |          |
|            | property of any particular substance                           |                  |                 |     |          |          |
| (c)        | Apply temperature measurements both in                         |                  |                 |     |          |          |
|            | degrees Celsius (°C) and in kelvin (K)                         |                  |                 |     |          |          |
| (d)        | Use the equation: $T(K) \approx \theta(^{\circ}C) + 273$       |                  |                 |     |          |          |
| (e)        | Describe solids, liquids and gases in terms of                 |                  |                 |     |          |          |
|            | the spacing, ordering and motion of atoms or                   |                  |                 |     |          |          |
|            | molecules                                                      |                  |                 |     |          |          |
| (f)        | Describe simple kinetic model for solids, liquids              |                  |                 |     |          |          |
|            | and gases                                                      |                  |                 |     |          |          |
| (g)        | Explain Brownian motion in terms of the kinetic                |                  |                 |     |          |          |
|            | model of matter and a simple demonstration                     |                  |                 |     |          |          |
|            | using smoke particles suspended in air                         |                  |                 |     |          |          |
| (h)        | Describe internal energy as the sum of the                     |                  |                 |     |          |          |
|            | random distribution of kinetic and potential                   |                  |                 |     |          |          |
|            | energies associated with the molecules of a                    |                  |                 |     |          |          |
|            | system                                                         |                  |                 |     |          |          |
| (i)        | Describe absolute zero (OK) as the lowest limit                |                  |                 |     |          |          |
|            | for temperature; the temperature at which a                    |                  |                 |     |          |          |
|            | substance has minimum internal energy                          |                  |                 |     |          |          |
| (j)        | Explain that an increase in the internal energy                |                  |                 |     |          |          |
|            | of a body occurs as its temperature rises                      |                  |                 |     |          |          |
| (k)        | Describe the changes in the internal energy of a               |                  |                 |     |          |          |
|            | substance during change of phase; constant                     |                  |                 |     |          |          |
|            | temperature during change of phase                             |                  |                 |     |          |          |
| <b>(I)</b> | Use the equation: $E = mc\Delta\theta$ for specific heat       |                  |                 |     |          |          |
|            | capacity of a substance                                        |                  |                 |     |          |          |
| (m)        | Describe and complete an electrical experiment                 |                  |                 |     |          |          |
|            | to determine the specific heat capacity of a                   |                  |                 |     |          |          |
|            | metal or a liquid                                              |                  |                 |     |          |          |
| (n)        | Describe techniques and procedures used for                    |                  |                 |     |          |          |
|            | an electrical method to determine the specific                 |                  |                 |     |          |          |
|            | heat capacity of a metal block and a liquid                    |                  |                 |     |          |          |
| (o)        | Use the equation: <b>E</b> = <b>mL</b> specific latent heat of |                  |                 |     |          |          |
|            | fusion and specific latent heat of vaporisation                |                  |                 |     |          |          |
| (p)        | Describe and complete an electrical                            |                  |                 |     |          |          |
|            | experiment to determine the specific latent                    |                  |                 |     |          |          |
|            | heat of fusion and vaporisation                                |                  |                 |     |          |          |

### **5.2 Circular Motion**

| Key Words                | Definition |
|--------------------------|------------|
| Radian                   |            |
| Period                   |            |
| Displacement             |            |
| Amplitude                |            |
| Phase Difference         |            |
| Frequency                |            |
| Angular frequency        |            |
| Angular velocity         |            |
| Centripetal Force        |            |
| Centripetal Acceleration |            |
| Simple Harmonic Motion   |            |

|         |                                                                                           | RAG              |                 |     |          |          |
|---------|-------------------------------------------------------------------------------------------|------------------|-----------------|-----|----------|----------|
|         | Criteria                                                                                  | Before<br>Lesson | After<br>Lesson | ЕОМ | Mock Rev | Revision |
| P5.2.2: | Circular motion                                                                           |                  |                 |     |          |          |
| (a)     | Use the radian as a measure of angle                                                      |                  |                 |     |          |          |
| (b)     | Determine the period and frequency of an                                                  |                  |                 |     |          |          |
|         | object in circular motion                                                                 |                  |                 |     |          |          |
| (c)     | Use the equation: $\omega = 2\pi/T$ or $\omega = 2\pi f$ for                              |                  |                 |     |          |          |
|         | angular velocity $oldsymbol{\omega}$                                                      |                  |                 |     |          |          |
| (d)     | Describe how a constant net force                                                         |                  |                 |     |          |          |
|         | perpendicular to the velocity of an object                                                |                  |                 |     |          |          |
|         | causes it to travel in a circular path                                                    |                  |                 |     |          |          |
| (e)     | Use the equation: $\mathbf{v} = \boldsymbol{\omega} \mathbf{r}$ for constant              |                  |                 |     |          |          |
| (6)     | speed in a circle                                                                         |                  |                 |     |          |          |
| (†)     | Use the equations: $a = v^2/r$ ; $a = \omega^2 r$ for                                     |                  |                 |     |          |          |
| /-\     | centripetal acceleration                                                                  |                  |                 |     |          |          |
| (g)     | Use the equations: $F = mv^2/r$ ; $F = m\omega^2 r$ for                                   |                  |                 |     |          |          |
| /h)     | centripetal force                                                                         |                  |                 |     |          |          |
| (n)     | Use techniques and procedures to                                                          |                  |                 |     |          |          |
|         | investigate circular motion using a whirling                                              |                  |                 |     |          |          |
| DE 2 2. | bung Circular motion                                                                      |                  |                 |     |          |          |
|         | Recall and define the terms displacement,                                                 |                  |                 |     |          |          |
| (a)     | amplitude, period, frequency, angular                                                     |                  |                 |     |          |          |
|         | frequency and phase difference                                                            |                  |                 |     |          |          |
| (b)     | Use the equation: $\omega = 2\pi/T$ or $\omega = 2\pi f$ for                              |                  |                 |     |          |          |
| (2)     | angular frequency $\omega$                                                                |                  |                 |     |          |          |
| (c)     | Define simple harmonic motion and use                                                     |                  |                 |     |          |          |
| (-,     | the equation: $a = -\omega^2 x$                                                           |                  |                 |     |          |          |
| (d)     | Use techniques and procedures to                                                          |                  |                 |     |          |          |
| . ,     | determine the period/frequency of simple                                                  |                  |                 |     |          |          |
|         | harmonic oscillations                                                                     |                  |                 |     |          |          |
| (e)     | Determine solutions to the equation <i>a</i> =                                            |                  |                 |     |          |          |
|         | $\omega^2 x$ e.g. $x = A \cos \omega t$ or $x = A \sin \omega t$                          |                  |                 |     |          |          |
| (f)     | Use the equations: $\mathbf{v} = \pm \omega \mathbf{V} \mathbf{A}^2 - \mathbf{x}^2$ hence |                  |                 |     |          |          |
|         | vmax = ωA                                                                                 |                  |                 |     |          |          |
| (g)     | Recall that the period of a simple harmonic                                               |                  |                 |     |          |          |
|         | oscillator is independent of its amplitude                                                |                  |                 |     |          |          |
|         | (isochronous oscillator)                                                                  |                  |                 |     |          |          |
| (h)     | Use graphical methods to relate the                                                       |                  |                 |     |          |          |
|         | changes in displacement, velocity and                                                     |                  |                 |     |          |          |
|         | acceleration during simple harmonic                                                       |                  |                 |     |          |          |
|         | motion                                                                                    |                  |                 |     |          |          |
| (i)     | Describe the interchange between kinetic                                                  |                  |                 |     |          |          |
|         | and potential energy during simple                                                        |                  |                 |     |          |          |
|         | harmonic motion                                                                           |                  |                 |     |          |          |
| (j)     | Draw energy-displacement graphs for a                                                     |                  |                 |     |          |          |
|         | simple harmonic oscillator                                                                |                  |                 |     |          |          |
| (k)     | Recall what free and forced oscillations are                                              |                  |                 |     |          |          |
|         | describe the effects of damping on an                                                     |                  |                 |     |          |          |
|         | oscillatory system                                                                        |                  |                 |     |          |          |

### 5.3 Damping

| Key Words           | Definition |
|---------------------|------------|
| Damped Oscillations |            |
| Resonance           |            |
| Natural Frequency   |            |

|                                                                                  | RAG              |                 |     |          |          |
|----------------------------------------------------------------------------------|------------------|-----------------|-----|----------|----------|
| Criteria                                                                         | Before<br>Lesson | After<br>Lesson | ЕОМ | Mock Rev | Revision |
| P5.3: Damping                                                                    |                  |                 |     |          |          |
| (a) Describe observe forced and damped oscillations for a range of systems       |                  |                 |     |          |          |
| (b) Define the terms: resonance and natural frequency                            |                  |                 |     |          |          |
| (c) Draw and interpret amplitude-driving frequency graphs for forced oscillators |                  |                 |     |          |          |
| (d) Describe practical examples of forced oscillations and resonance             |                  |                 |     |          |          |

# Module 5: Newtonian world and Astrophysics 5.4 Gravitational Fields

| Key Words                   | Definition |
|-----------------------------|------------|
| Gravitational field         |            |
| Field lines                 |            |
| Field strength              |            |
| Newton's Law of gravitation |            |
| Kepler's Law                |            |
| Geostationary               |            |
| Gravitational Potential     |            |
| Work done                   |            |
| Escape Velocity             |            |

|         |                                                                                   | RAG              |                 |     |          |          |
|---------|-----------------------------------------------------------------------------------|------------------|-----------------|-----|----------|----------|
|         | Criteria                                                                          | Before<br>Lesson | After<br>Lesson | ЕОМ | Mock Rev | Revision |
| P5.3: G | ravitational Fields                                                               |                  |                 |     |          |          |
| (a)     | Recall that gravitational fields are due to                                       |                  |                 |     |          |          |
|         | objects having mass                                                               |                  |                 |     |          |          |
| (b)     | Use modelling the mass of a spherical                                             |                  |                 |     |          |          |
|         | object as a point mass at its centre                                              |                  |                 |     |          |          |
| (c)     | Use gravitational field lines to map                                              |                  |                 |     |          |          |
|         | gravitational fields                                                              |                  |                 |     |          |          |
| (d)     | Use the equation: <b>g</b> = <b>F/m</b> for gravitational field strength          |                  |                 |     |          |          |
| (e)     | Explain the concept of gravitational fields                                       |                  |                 |     |          |          |
| (0)     | as being one of a number of forms of field                                        |                  |                 |     |          |          |
|         | giving rise to a force                                                            |                  |                 |     |          |          |
| (f)     | Use the equation: Newton's law of                                                 |                  |                 |     |          |          |
| ( ' '   | gravitation; $F = -GMm/r^2$ for the force                                         |                  |                 |     |          |          |
|         | between two point masses                                                          |                  |                 |     |          |          |
| (g)     | Use the equation: gravitational field                                             |                  |                 |     |          |          |
| (8)     | strength $g = -GM/r^2$ for a point mass                                           |                  |                 |     |          |          |
| (h)     | Recall that gravitational field strength is                                       |                  |                 |     |          |          |
| ,       | uniform close to the surface of the Earth                                         |                  |                 |     |          |          |
|         | and numerically equal to the acceleration                                         |                  |                 |     |          |          |
|         | of free fall                                                                      |                  |                 |     |          |          |
| (i)     | Recall Kepler's three laws of planetary                                           |                  |                 |     |          |          |
|         | motion                                                                            |                  |                 |     |          |          |
| (j)     | Recall that the centripetal force on a                                            |                  |                 |     |          |          |
|         | planet is provided by the gravitational                                           |                  |                 |     |          |          |
|         | force between it and the Sun                                                      |                  |                 |     |          |          |
| (k)     | Use the equation: $T^2 = (4\pi^2/GM)r^3$ and be                                   |                  |                 |     |          |          |
|         | able to derive it from first principles                                           |                  |                 |     |          |          |
| (1)     | Describe the relationship for Kepler's third                                      |                  |                 |     |          |          |
|         | law                                                                               |                  |                 |     |          |          |
| (m)     | ) $T^2 \propto r^3$ and apply it to systems other than our solar system           |                  |                 |     |          |          |
| (n)     | Recall what a geostationary orbit is and                                          |                  |                 |     |          |          |
|         | describe the uses of geostationary                                                |                  |                 |     |          |          |
|         | satellites                                                                        |                  |                 |     |          |          |
| (o)     | Predict geostationary orbits using                                                |                  |                 |     |          |          |
|         | Newtonian laws                                                                    |                  |                 |     |          |          |
| (p)     | Describe gravitational potential at a point                                       |                  |                 |     |          |          |
|         | as the work done in bringing unit mass                                            |                  |                 |     |          |          |
|         | from infinity to the point                                                        |                  |                 |     |          |          |
| (q)     | Recall that gravitational potential is zero at                                    |                  |                 |     |          |          |
|         | infinity                                                                          |                  |                 |     |          |          |
| (r)     | Apply the equation for gravitational                                              |                  |                 |     |          |          |
| 1-1     | potential                                                                         |                  |                 |     |          |          |
| (S)     | $V_g = -GM/r$ at a distance $r$ from a point                                      |                  |                 |     |          |          |
| /+/     | mass <b>M</b> Describe changes in gravitational notantial                         |                  |                 |     |          |          |
| (τ)     | Describe changes in gravitational potential                                       |                  |                 |     |          |          |
| 1       | for given circumstances                                                           |                  |                 |     | +        |          |
| (u)     | Draw force—distance graph for a point or spherical mass and recall that work done |                  |                 |     |          |          |
|         | is the area under graph                                                           |                  |                 |     |          |          |
|         | is the area under graph                                                           |                  |                 |     |          |          |

| г |                                               |  | 1 | 1 |
|---|-----------------------------------------------|--|---|---|
|   | (v) Apply the equation for gravitational      |  |   |   |
|   | potential energy $E = mV_g = -GMm/r$ at a     |  |   |   |
|   | distance <i>r</i> from a point mass <i>M</i>  |  |   |   |
|   | (w) Define escape velocity                    |  |   |   |
|   | (x) Predict the escape velocity of atoms from |  |   |   |
|   | the atmosphere of planets                     |  |   |   |

## 5.5 Astrophysics and Cosmology

| Key Words           | Definition |
|---------------------|------------|
| Planet              |            |
| Planetary Satellite |            |
| Comet               |            |
| Solar system        |            |
| Galaxy              |            |
| Universe            |            |
| Red giant           |            |
| White dwarf         |            |
| Planetary nebula    |            |
| Chandrasekhar limit |            |
| Neutron star        |            |
| Black hole          |            |
| Supernova           |            |
| Continuous spectrum |            |

| Emission line spectrum  |  |
|-------------------------|--|
| Absorption line spectra |  |
| Diffraction grating     |  |
| Wien's displacement Law |  |
| Luminosity              |  |
| Astronomical unit       |  |
| Light year              |  |
| Parsec                  |  |
| Stellar parallax        |  |
| Homogeneous             |  |
| Isotropic               |  |
| Doppler shift           |  |
| Hubble's Law            |  |
| Dark energy             |  |
| Dark matter             |  |

|       |                                                                                     | RAG              |                 |     |          |          |
|-------|-------------------------------------------------------------------------------------|------------------|-----------------|-----|----------|----------|
|       | Criteria                                                                            | Before<br>Lesson | After<br>Lesson | EOM | Mock Rev | Revision |
| P5.5: | Astrophysics and Cosmology                                                          |                  |                 |     |          |          |
| (a)   | Define the terms planets, planetary                                                 |                  |                 |     |          |          |
|       | satellites, comets, solar systems, galaxies                                         |                  |                 |     |          |          |
| (1.)  | and the universe                                                                    |                  |                 |     |          |          |
| (b)   | Describe formation of a star from                                                   |                  |                 |     |          |          |
|       | interstellar dust and gas in terms of                                               |                  |                 |     |          |          |
|       | gravitational collapse, fusion of hydrogen                                          |                  |                 |     |          |          |
| (a)   | into helium, radiation and gas pressure  Describe evolution of a low-mass star like |                  |                 |     |          |          |
| (c)   |                                                                                     |                  |                 |     |          |          |
|       | our Sun into a red giant and white dwarf and describe planetary nebula              |                  |                 |     |          |          |
| (d)   | Describe characteristics of a white dwarf,                                          |                  |                 |     |          |          |
| (u)   | define electron degeneracy pressure and                                             |                  |                 |     |          |          |
|       | discuss Chandrasekhar limit                                                         |                  |                 |     |          |          |
| (e)   | Describe the evolution of a massive star into                                       |                  |                 |     |          |          |
| (0)   | a red super giant and then either a neutron                                         |                  |                 |     |          |          |
|       | star or black hole and describe supernova                                           |                  |                 |     |          |          |
| (f)   | Describe characteristics of a neutron star                                          |                  |                 |     |          |          |
| . ,   | and a black hole                                                                    |                  |                 |     |          |          |
| (g)   | Describe and explain the Hertzsprung-                                               |                  |                 |     |          |          |
|       | Russell (HR) diagram as luminosity-                                                 |                  |                 |     |          |          |
|       | temperature plot for main sequence; red                                             |                  |                 |     |          |          |
|       | giants; super red giants; white dwarfs                                              |                  |                 |     |          |          |
| (h)   | For stars describe energy levels of electrons                                       |                  |                 |     |          |          |
|       | in isolated gas atoms                                                               |                  |                 |     |          |          |
| (i)   | Describe energy levels of electrons in                                              |                  |                 |     |          |          |
|       | isolated gas atoms                                                                  |                  |                 |     |          |          |
| (j)   | Recall the idea that energy levels have                                             |                  |                 |     |          |          |
|       | negative values                                                                     |                  |                 |     |          |          |
| (k)   | Describe emission spectral lines from hot                                           |                  |                 |     |          |          |
|       | gases in terms of emission of photons and                                           |                  |                 |     |          |          |
|       | transition of electrons between discrete                                            |                  |                 |     |          |          |
| //\   | energy levels                                                                       |                  |                 |     |          |          |
| (1)   | Use the equations $hf = \Delta E$ and $hc/\Lambda = \Delta E$                       |                  |                 |     |          |          |
| (m)   | Recall that different atoms have different                                          |                  |                 |     |          |          |
|       | spectral lines which can be used to identify elements within stars                  |                  |                 |     |          |          |
| (n)   | Recall what continuous spectrum, emission                                           |                  |                 |     |          |          |
| (11)  | line spectrum and absorption line spectrum                                          |                  |                 |     |          |          |
|       | are                                                                                 |                  |                 |     |          |          |
| (o)   | Describe how transmission diffraction                                               |                  |                 |     |          |          |
| (0)   | grating is used to determine the wavelength                                         |                  |                 |     |          |          |
|       | of light                                                                            |                  |                 |     |          |          |
| (p)   | Describe the condition for maxima $d \sin \theta =$                                 |                  |                 |     |          |          |
| AF 7  | n∕a, where <b>d</b> is the grating spacing                                          |                  |                 |     |          |          |
| (q)   | Use of Wien's displacement law $\Lambda_{max} \propto 1/T$                          |                  |                 |     |          |          |
| ,     | to estimate the peak surface temperature                                            |                  |                 |     |          |          |
|       | (of a star)                                                                         |                  |                 |     |          |          |
| (r)   | Use the equation: for luminosity <i>L</i> of a star                                 |                  |                 |     |          |          |
|       | in Stefan's law $L = 4\pi^2 \sigma T^4$ where $\sigma$ is the                       |                  |                 |     |          |          |
|       | Stefan constant                                                                     |                  |                 |     |          |          |

| (s)    | Use Wien's displacement law and Stefan's                                                |  |  |  |
|--------|-----------------------------------------------------------------------------------------|--|--|--|
| (3)    | law to estimate the radius of a star                                                    |  |  |  |
| (t)    | Recall that distances in cosmology are                                                  |  |  |  |
| (1)    | measured in astronomical unit (AU), light-                                              |  |  |  |
|        | year (ly) and parsec (pc)                                                               |  |  |  |
| (u)    | Define stellar parallax; distances the parsec                                           |  |  |  |
| (u)    | (pc)                                                                                    |  |  |  |
| (v)    | Use the equation $p = 1/d$ , where $p$ is the                                           |  |  |  |
| ( ,    | parallax in seconds of arc and <b>d</b> is the                                          |  |  |  |
|        | distance in parsec                                                                      |  |  |  |
| (w)    | Recall the Cosmological principle; universe is                                          |  |  |  |
| (**)   | homogeneous, isotropic and the laws of                                                  |  |  |  |
|        | physics are universal                                                                   |  |  |  |
| (x)    | Describe the Doppler effect and the Doppler                                             |  |  |  |
| (,     | shift of electromagnetic radiation                                                      |  |  |  |
| (y)    | Use the Doppler equation: $\Delta \Lambda/\Lambda \approx \Delta f/f \approx$           |  |  |  |
| '''    | v/c for a source of electromagnetic radiation                                           |  |  |  |
|        | moving relative to an observer                                                          |  |  |  |
| (z)    | Use the equation for: Hubble's law; $\mathbf{v} \approx \mathbf{H}_0 \mathbf{d}$        |  |  |  |
|        | for receding galaxies, where $H_0$ is the Hubble                                        |  |  |  |
|        | constant                                                                                |  |  |  |
| (aa)   | Describe the model of an expanding                                                      |  |  |  |
|        | universe supported by galactic red shift                                                |  |  |  |
| (bb)   | Recall and use the Hubble constant $H_0$ in                                             |  |  |  |
|        | both <b>km</b> <sup>s-1</sup> <b>Mpc</b> <sup>-1</sup> and <b>s</b> <sup>-1</sup> units |  |  |  |
| (cc)   | Recall and describe the principles of the Big                                           |  |  |  |
|        | Bang theory                                                                             |  |  |  |
| (dd)   | Recall experimental evidence for the Big                                                |  |  |  |
|        | Bang theory from microwave background                                                   |  |  |  |
|        | radiation at a temperature of 2.7 K                                                     |  |  |  |
| (ee)   | ·                                                                                       |  |  |  |
| (20)   | Big Bang theory by the scientific community                                             |  |  |  |
| (ff)   |                                                                                         |  |  |  |
| , ,    | the expansion of space-time                                                             |  |  |  |
| (gg)   |                                                                                         |  |  |  |
| (1.1.) | universe; $t \approx H_0^{-1}$                                                          |  |  |  |
| (hh)   | Describe the evolution of the universe after                                            |  |  |  |
| /…     | the Big Bang to the present                                                             |  |  |  |
| (ii)   | Describe the current ideas of universe is                                               |  |  |  |
|        | made up of dark energy, dark matter, and a                                              |  |  |  |
|        | small percentage of ordinary matter.                                                    |  |  |  |

### **6.1 Capacitors**

| Key Words         | Definition |
|-------------------|------------|
| Capacitance       |            |
| Farad             |            |
| Time constant     |            |
| Exponential decay |            |

|                                                                                  | RAG              |                 |     |          |          |
|----------------------------------------------------------------------------------|------------------|-----------------|-----|----------|----------|
| Criteria                                                                         | Before<br>Lesson | After<br>Lesson | EOM | Mock Rev | Revision |
| P6.1: Capacitors                                                                 |                  |                 |     |          |          |
| (a) Use the equation for: capacitance; $C = Q/V$                                 |                  |                 |     |          |          |
| and recall the unit farad                                                        |                  |                 |     |          |          |
| (b) Describe charging and discharging of a                                       |                  |                 |     |          |          |
| capacitor or capacitor plates with reference                                     |                  |                 |     |          |          |
| to the flow of electrons                                                         |                  |                 |     |          |          |
| (c) Describe the total capacitance of two or                                     |                  |                 |     |          |          |
| more capacitors in series as $1/C = 1/C1 + 1/C2 \dots$                           |                  |                 |     |          |          |
| (d) Describe the total capacitance of two or                                     |                  |                 |     |          |          |
| more capacitors in parallel as                                                   |                  |                 |     |          |          |
| $C = C1 + C2 + \dots$                                                            |                  |                 |     |          |          |
| (e) Complete analysis of circuits containing                                     |                  |                 |     |          |          |
| capacitors, including resistors                                                  |                  |                 |     |          |          |
| (f) Use techniques and procedures to                                             |                  |                 |     |          |          |
| investigate capacitors in both series and                                        |                  |                 |     |          |          |
| parallel combinations using ammeters and                                         |                  |                 |     |          |          |
| voltmeters.                                                                      |                  |                 |     |          |          |
| (g) Draw p.d. – charge graphs for a capacitor                                    |                  |                 |     |          |          |
| and recall energy stored is area under                                           |                  |                 |     |          |          |
| graph                                                                            |                  |                 |     |          |          |
| (h) Recall that energy is stored by capacitor                                    |                  |                 |     |          |          |
| $W = \frac{1}{2} QV, W = \frac{1}{2} Q^2 / C \text{ and } W = \frac{1}{2} V^2 C$ |                  |                 |     |          |          |
| (i) Investigate charging and discharging                                         |                  |                 |     |          |          |
| capacitor through a resistor                                                     |                  |                 |     |          |          |
| (j) Use techniques and procedures to investigate the charge and the discharge of |                  |                 |     |          |          |
| a capacitor using both meters and data-                                          |                  |                 |     |          |          |
| loggers                                                                          |                  |                 |     |          |          |
| (k) Recall the time constant of a capacitor-                                     |                  |                 |     |          |          |
| resistor circuit; $\pi = CR$                                                     |                  |                 |     |          |          |
| (l) Use the equations of the form $x = x^0 e^{-1/CR}$                            |                  |                 |     |          |          |
| and $x = x^0 (1 - e^{-1/CR})$ for capacitor-resistor                             |                  |                 |     |          |          |
| circuits                                                                         |                  |                 |     |          |          |
| (m)Use graphical methods and spreadsheet                                         |                  |                 |     |          |          |
| modelling of the equation $\Delta Q/\Delta t = -Q/CR$                            |                  |                 |     |          |          |
| for a discharging capacitor                                                      |                  |                 |     |          |          |
| (n) Recall how lnx-t graphs can be used to                                       |                  |                 |     |          |          |
| determine CR                                                                     |                  |                 |     |          |          |
| (o) Draw exponential decay graphs and                                            |                  |                 |     |          |          |
| determine constant-ratio property of such a                                      |                  |                 |     |          |          |
| graph.                                                                           |                  |                 |     |          |          |

### **6.2 Electric Fields**

| Key Words              | Definition |
|------------------------|------------|
| Electric Field         |            |
| Uniform electric field |            |
| Electric potential     |            |
|                        |            |

|                                                                                                                   | RAG              |                 |     |          |          |  |
|-------------------------------------------------------------------------------------------------------------------|------------------|-----------------|-----|----------|----------|--|
| Criteria                                                                                                          | Before<br>Lesson | After<br>Lesson | EOM | Mock Rev | Revision |  |
| P6.2: Electric Fields                                                                                             |                  |                 |     |          |          |  |
| (a) Recall that electric fields are due to charges                                                                |                  |                 |     |          |          |  |
| (b) Model a uniformly charged sphere as a                                                                         |                  |                 |     |          |          |  |
| point charge at its centre                                                                                        |                  |                 |     |          |          |  |
| (c) Draw electric field lines to map electric fields                                                              |                  |                 |     |          |          |  |
| (d) Use the equation E= F/Q for electric field strength                                                           |                  |                 |     |          |          |  |
| (e) Use the equation: Coulomb's law;                                                                              |                  |                 |     |          |          |  |
| $F = Qq/4\pi\epsilon_0 r^2$ for the force between two point charges                                               |                  |                 |     |          |          |  |
| (f) Use the equation: $E = Q/4\pi\epsilon_0 r^2$ electric                                                         |                  |                 |     |          |          |  |
| field strength for a point charge                                                                                 |                  |                 |     |          |          |  |
| (g) Discuss the similarities and differences                                                                      |                  |                 |     |          |          |  |
| between the gravitational field of a point                                                                        |                  |                 |     |          |          |  |
| mass and the electric field of a point charge                                                                     |                  |                 |     |          |          |  |
| (h) Describe the concept of electric fields as                                                                    |                  |                 |     |          |          |  |
| being one of a number of forms of field                                                                           |                  |                 |     |          |          |  |
| giving rise to a force                                                                                            |                  |                 |     |          |          |  |
| (i) Use the equation: $E = V/d$ for uniform                                                                       |                  |                 |     |          |          |  |
| electric field strength                                                                                           |                  |                 |     |          |          |  |
| (j) Use the equation: $C = \varepsilon_0 A/d$ ; $C \varepsilon A/d$ ; $\varepsilon = \varepsilon r \varepsilon_0$ |                  |                 |     |          |          |  |
| for parallel plate capacitor; permittivity                                                                        |                  |                 |     |          |          |  |
| (k) Describe motion of charged particles in a                                                                     |                  |                 |     |          |          |  |
| uniform electric field                                                                                            |                  |                 |     |          |          |  |
| (l) Recall how electric potential is zero at                                                                      |                  |                 |     |          |          |  |
| infinity and electric potential at a point as                                                                     |                  |                 |     |          |          |  |
| the work done in bringing unit positive                                                                           |                  |                 |     |          |          |  |
| charge from infinity to the point                                                                                 |                  |                 |     |          |          |  |
| (m)Use the equation: electric potential                                                                           |                  |                 |     |          |          |  |
| $V = Q/4\pi\varepsilon_0 r^2$ at a distance $r$ from a point                                                      |                  |                 |     |          |          |  |
| charge                                                                                                            |                  |                 |     |          |          |  |
| (n) Describe changes in electric potential                                                                        |                  |                 |     |          |          |  |
| (o) Use the equation capacitance $C = 4\pi\varepsilon_0 R$ for                                                    |                  |                 |     |          |          |  |
| an isolated sphere and derive it from $Q = VC$                                                                    |                  |                 |     |          |          |  |
| (p) Draw force-distance graphs for a point or                                                                     |                  |                 |     |          |          |  |
| spherical charge and recall that work done                                                                        |                  |                 |     |          |          |  |
| is area under graph                                                                                               |                  |                 |     |          |          |  |
| (q) Use the equation: electric potential energy                                                                   |                  |                 |     |          |          |  |
| $Qq/4\pi\varepsilon r = Qq/4\pi\varepsilon_0 r$ of a distance $r$ from a point charge $Q$                         |                  |                 |     |          |          |  |
| (r) Recall that electric fields are due to charges                                                                |                  |                 |     |          |          |  |

### **6.3 Electromagnetism**

| Key Words                | Definition |
|--------------------------|------------|
| Magnetic Field           |            |
| Solenoid                 |            |
| Fleming's Left Hand rule |            |
| Magnetic Flux density    |            |
| Tesla                    |            |
| Velocity selector        |            |
| Flux                     |            |
| Flux Linkage             |            |
| Weber                    |            |
| Faraday's Law            |            |
| Lenz's Law               |            |
| Search coils             |            |
| Transformer              |            |

| Criteria | RAG |
|----------|-----|

|                                                                                   | Before<br>Lesson | After<br>Lesson | ЕОМ | Mock Rev | Revision |
|-----------------------------------------------------------------------------------|------------------|-----------------|-----|----------|----------|
| P6.3: Electromagnetism                                                            |                  |                 |     |          |          |
| (a) Recall that magnetic fields are due to moving                                 |                  |                 |     |          |          |
| charges or permanent magnets                                                      |                  |                 |     |          |          |
| (b) Draw magnetic field lines to map magnetic                                     |                  |                 |     |          |          |
| fields                                                                            |                  |                 |     |          |          |
| (c) Draw magnetic field patterns for a long                                       |                  |                 |     |          |          |
| straight current carrying conductor, a flat coil                                  |                  |                 |     |          |          |
| and a long solenoid                                                               |                  |                 |     |          |          |
| (d) Recall and apply Fleming's left-hand rule                                     |                  |                 |     |          |          |
| (e) Use the equation: force on a current-carrying conductor; $F = BIL\sin\theta$  |                  |                 |     |          |          |
| (f) Use techniques and procedures to determine                                    |                  |                 |     |          |          |
| the uniform magnetic flux density between                                         |                  |                 |     |          |          |
| the poles of a magnet using a current-                                            |                  |                 |     |          |          |
| carrying wire & digital balance                                                   |                  |                 |     |          |          |
| (g) Describe magnetic flux density and use the                                    |                  |                 |     |          |          |
| unit tesla.                                                                       |                  |                 |     |          |          |
| (h) Recall force on a charged particle travelling                                 |                  |                 |     |          |          |
| at right angles to a uniform magnetic field;                                      |                  |                 |     |          |          |
| F = BQv                                                                           |                  |                 |     |          |          |
| (i) Recall that charged particles moving in a                                     |                  |                 |     |          |          |
| uniform magnetic field; circular orbits of                                        |                  |                 |     |          |          |
| charged particles in a uniform magnetic field                                     |                  |                 |     |          |          |
| (j) Describe how charged particles move in a region occupied by both electric and |                  |                 |     |          |          |
| magnetic fields and recall what velocity                                          |                  |                 |     |          |          |
| selector is                                                                       |                  |                 |     |          |          |
| (k) Explain and use the terms: magnetic flux                                      |                  |                 |     |          |          |
| density, flux $\varphi$ and flux linkage $\varphi = Bacos\theta$                  |                  |                 |     |          |          |
| and use the unit weber                                                            |                  |                 |     |          |          |
| (l) Explain how to use Faraday's law to                                           |                  |                 |     |          |          |
| determine the magnitude of an induced e.m.f.                                      |                  |                 |     |          |          |
| (m)Use the equation that combines Faraday's                                       |                  |                 |     |          |          |
| and Lenz's laws $E = -\Delta(N\Phi)/\Delta t$                                     |                  |                 |     |          |          |
| (n) Use techniques and procedures used to                                         |                  |                 |     |          |          |
| investigate magnetic flux using search coils                                      |                  |                 |     |          |          |
| (o) Describe and explain a simple a.c. generator                                  |                  |                 |     |          |          |
| and a simple laminated iron-cored transformer                                     |                  |                 |     |          |          |
| (p) Use the equation: $ns/np = vs/vp = Ip/Is$ for                                 |                  |                 |     |          |          |
| an ideal transformer                                                              |                  |                 |     |          |          |
| (q) Use techniques and procedures to investigate                                  |                  |                 |     |          |          |
| transformers                                                                      |                  |                 |     |          |          |
| (r) Recall that magnetic fields are due to moving                                 |                  |                 |     |          |          |
| charges or permanent magnets                                                      |                  |                 |     |          |          |

### P6.4: Nuclear and particle physics

| Key Words                   | Definition |
|-----------------------------|------------|
| Strong nuclear force        |            |
| Particles and antiparticles |            |
| Positron                    |            |
| Neutrino                    |            |
| Hadron                      |            |
| Lepton                      |            |
| Quark                       |            |
| β+ decay                    |            |
| B- decay                    |            |
| spontaneous                 |            |
| Random                      |            |
| Decay constant              |            |

| Half life               |  |
|-------------------------|--|
| Annihilation            |  |
| Pair production         |  |
| Mass defect             |  |
| Binding energy          |  |
| Induced nuclear fission |  |
| Chain reaction          |  |
| Fuel rods               |  |
| Control rods            |  |
| Moderator               |  |
| Fusion                  |  |

|                                                                                              | RAG              |                 |     |          |          |
|----------------------------------------------------------------------------------------------|------------------|-----------------|-----|----------|----------|
| Criteria                                                                                     | Before<br>Lesson | After<br>Lesson | ЕОМ | Mock Rev | Revision |
| P6.4: Nuclear and particle physics                                                           |                  |                 |     |          |          |
| Describe and explain alpha-particle scattering                                               |                  |                 |     |          |          |
| experiment as evidence of a small charged                                                    |                  |                 |     |          |          |
| nucleus                                                                                      |                  |                 |     |          |          |
| Recall the simple nuclear model of the atom and                                              |                  |                 |     |          |          |
| describe the relative sizes of atom and nucleus                                              |                  |                 |     |          |          |
| Recall the meaning of the terms proton number;                                               |                  |                 |     |          |          |
| nucleon number; isotopes and recall the notation ${}^A_{X}$ for the representation of nuclei |                  |                 |     |          |          |
| Z X for the representation of flucier                                                        |                  |                 |     |          |          |
| Describe the strong nuclear force and short-                                                 |                  |                 |     |          |          |
| range nature of the force and recall that it is                                              |                  |                 |     |          |          |
| attractive to about 3 fm and repulsive below                                                 |                  |                 |     |          |          |
| about 0.5 fm                                                                                 |                  |                 |     |          |          |
| Use the equation: for radius of nuclei;                                                      |                  |                 |     |          |          |
| $R = r_0 A^{1/3}$ = where $r_0$ is a constant and $A$ is the                                 |                  |                 |     |          |          |
| nucleon number                                                                               |                  |                 |     |          |          |
| Calculate mean densities of atoms and nuclei                                                 |                  |                 |     |          |          |
| Define the terms particles and antiparticles;                                                |                  |                 |     |          |          |
| electron–positron, proton-antiproton, neutron-                                               |                  |                 |     |          |          |
| antineutron and neutrino-antineutrino                                                        |                  |                 |     |          |          |
| Recall that a particle and its corresponding                                                 |                  |                 |     |          |          |
| antiparticle have same mass; electron and                                                    |                  |                 |     |          |          |
| positron have opposite charge; proton and                                                    |                  |                 |     |          |          |
| antiproton have opposite charge  Describe the classification of hadrons; proton              |                  |                 |     |          |          |
| and neutron as examples of hadrons                                                           |                  |                 |     |          |          |
| Recall that all hadrons are subject to the strong                                            |                  |                 |     |          |          |
| nuclear force                                                                                |                  |                 |     |          |          |
| Describe the classification of leptons; electron                                             |                  |                 |     |          |          |
| and neutrino as examples of leptons                                                          |                  |                 |     |          |          |
| Recall that all leptons are subject to the weak                                              |                  |                 |     |          |          |
| nuclear force                                                                                |                  |                 |     |          |          |
| Describe simple quark model of hadrons in                                                    |                  |                 |     |          |          |
| terms of up (u), down (d) and strange (s) quarks                                             |                  |                 |     |          |          |
| and their respective anti-quarks                                                             |                  |                 |     |          |          |
| Describe the quark model of the proton (uud) and the neutron (udd)                           |                  |                 |     |          |          |
| Recall the charges of the up (u), down (d),                                                  |                  |                 |     |          |          |
|                                                                                              |                  |                 |     |          |          |
| strange (s), anti-up $(\frac{1}{u})$ , anti-down $(\frac{1}{d})$ and the                     |                  |                 |     |          |          |
| anti-strange( $\frac{1}{s}$ ) quarks as fractions of the                                     |                  |                 |     |          |          |
| elementary charge e                                                                          |                  |                 |     |          |          |
| Describe beta-minus ( $\beta$ -) decay and beta-plus                                         |                  |                 |     |          |          |
| (β+) decay  Describe $β$ - decay in terms of a quark model;                                  |                  |                 |     |          |          |
| Describe β+ decay in terms of a quark model;  Describe β+ decay in terms of a quark model;   |                  |                 |     |          |          |
| Balance quark transformation equations in                                                    |                  |                 |     |          |          |
| terms of charge                                                                              |                  |                 |     |          |          |
| Describe the decay of particles in terms of the                                              |                  |                 |     |          |          |
| quark model                                                                                  |                  |                 |     |          |          |
| Describe radioactive decay in terms of the                                                   |                  |                 |     |          |          |
| spontaneous and random nature of decay                                                       |                  |                 |     |          |          |

|                                                                              | T | 1 |          |
|------------------------------------------------------------------------------|---|---|----------|
| Explain the relationships between the nature,                                |   |   |          |
| penetration, ionising ability and range in                                   |   |   |          |
| different materials of nuclear radiations (alpha,                            |   |   |          |
| beta and gamma)                                                              |   |   |          |
| Use techniques and procedures to investigate                                 |   |   |          |
| the absorption of $\alpha$ -particles, $\beta$ -particles and $\gamma$ -     |   |   |          |
| rays by appropriate materials                                                |   |   |          |
| Use nuclear decay equations for alpha, beta-                                 |   |   |          |
| minus and beta-plus decays                                                   |   |   |          |
| Describe the activity of a source; decay constant                            |   |   |          |
| $\Lambda$ of an isotope and use $A = \Lambda N$                              |   |   |          |
| Calculate the half-life of an isotope; $\Lambda t_{1/2} = \ln(2)$            |   |   |          |
| Use techniques and procedures to determine the                               |   |   |          |
| half-life of an isotope such as protactinium                                 |   |   |          |
| Use the equations: $A = A_0 e^{-At}$ and $N = N_0 e^{-At}$ ,                 |   |   |          |
| where $\boldsymbol{A}$ is the activity and $\boldsymbol{N}$ is the number of |   |   |          |
| undecayed nuclei                                                             |   |   |          |
| Simulate radioactive decay using dice                                        |   |   |          |
| Use graphical methods and spreadsheet                                        |   |   |          |
| modelling of the equation $\Delta N/\Delta t = -\Lambda N$ for               |   |   |          |
| radioactive decay                                                            |   |   |          |
| Describe applications of radioactive dating, e.g.                            |   |   |          |
| carbon-dating                                                                |   |   |          |
| Recall and use Einstein's mass-energy equation;                              |   |   |          |
| $\Delta E = \Delta mc^2$                                                     |   |   |          |
| Describe how energy is released (or absorbed)                                |   |   |          |
| in simple nuclear reactions                                                  |   |   |          |
| Describe the creation and annihilation of                                    |   |   |          |
| particle-antiparticle pairs                                                  |   |   |          |
| Define the terms mass defect; binding energy;                                |   |   |          |
| binding energy per nucleon                                                   |   |   |          |
| Describe the binding energy per nucleon against                              |   |   |          |
| nucleon number curve for energy changes in                                   |   |   |          |
| reactions                                                                    |   |   |          |
| Explain the binding energy of nuclei using                                   |   |   |          |
| Einstein's mass-energy equation and masses of                                |   |   |          |
| nuclei                                                                       |   |   |          |
| Describe induced nuclear fission and chain                                   |   |   |          |
| reactions                                                                    |   |   |          |
| Recall the basic structure and function of a                                 |   |   |          |
| fission reactor including components – fuel rods,                            |   |   |          |
| control rods and moderator                                                   |   |   |          |
| Describe the environmental impact of nuclear                                 |   |   |          |
| waste                                                                        |   |   |          |
| Discuss the decision making process when                                     |   |   |          |
| building new nuclear power stations                                          |   |   |          |
| Describe nuclear fusion including fusion                                     |   |   |          |
| reactions and temperature                                                    |   |   |          |
| Balance nuclear transformation equations                                     |   |   |          |
| Datance nuclear cransionnation equations                                     |   |   | <u> </u> |

### P6.5: Medical imaging

| Key Words            | Definition |
|----------------------|------------|
| X-ray                |            |
| Attenuation          |            |
| Simple scatter       |            |
| Photoelectric effect |            |
| Compton effect       |            |
| Pair production      |            |
| Contrast media       |            |
| CAT                  |            |
| Tracer               |            |
| Gamma camera         |            |
| Scintillator         |            |
| Collimator           |            |

| Photomultiplier tube |  |
|----------------------|--|
| PET                  |  |
| Ultrasound           |  |
| Piezoelectric effect |  |
| Transducer           |  |
| A-scan               |  |
| B-scan               |  |
| Acoustic impedance   |  |

|                                                                                         | RAG              |                 |     |          |          |
|-----------------------------------------------------------------------------------------|------------------|-----------------|-----|----------|----------|
| Criteria                                                                                | Before<br>Lesson | After<br>Lesson | EOM | Mock Rev | Revision |
| P6.5: Medical imaging                                                                   |                  |                 |     | ·        |          |
| Describe basic structure of an X-ray tube                                               |                  |                 |     |          |          |
| including components - heater (cathode), anode,                                         |                  |                 |     |          |          |
| target metal and high voltage supply                                                    |                  |                 |     |          |          |
| Describe the production of X-ray photons from                                           |                  |                 |     |          |          |
| an X-ray tube                                                                           |                  |                 |     |          |          |
| Describe and explain X-ray attenuation                                                  |                  |                 |     |          |          |
| mechanisms; simple scatter, photoelectric effect,                                       |                  |                 |     |          |          |
| Compton effect and pair production                                                      |                  |                 |     |          |          |
| Describe X-ray imaging with contrast media                                              |                  |                 |     |          |          |
| using barium and iodine                                                                 |                  |                 |     |          |          |
| Describe computerised axial tomography (CAT)                                            |                  |                 |     |          |          |
| scanning including components – rotating X-                                             |                  |                 |     |          |          |
| tube, ring of detectors, computer software and display                                  |                  |                 |     |          |          |
| Discuss advantages of a CAT scan over an X-ray                                          |                  |                 |     |          |          |
| image                                                                                   |                  |                 |     |          |          |
| Describe the use of medical tracers including                                           |                  |                 |     |          |          |
| technetium–99m and fluorine–18                                                          |                  |                 |     |          |          |
| Discuss and explain gamma camera; components                                            |                  |                 |     |          |          |
| - collimator, scintillator, photomultiplier tubes,                                      |                  |                 |     |          |          |
| computer and display and describe the                                                   |                  |                 |     |          |          |
| formation of image                                                                      |                  |                 |     |          |          |
| Explain diagnosis using gamma camera                                                    |                  |                 |     |          |          |
| Describe the positron emission tomography                                               |                  |                 |     |          |          |
| (PET) scanner including annihilation of                                                 |                  |                 |     |          |          |
| positron-electron pairs and the formation of                                            |                  |                 |     |          |          |
| image                                                                                   |                  |                 |     |          |          |
| Discuss diagnosis using PET scanning                                                    |                  |                 |     |          |          |
| Discuss Issues raised when equipping a hospital                                         |                  |                 |     |          |          |
| with an expensive scanner                                                               |                  |                 |     |          |          |
| Describe ultrasound as a longitudinal wave with                                         |                  |                 |     |          |          |
| frequency greater than 20 kHz                                                           |                  |                 |     |          |          |
| Describe the Piezoelectric effect and the                                               |                  |                 |     |          |          |
| ultrasound transducer as a device that emits and                                        |                  |                 |     |          |          |
| receives ultrasound                                                                     |                  |                 |     |          |          |
| Discuss the differences between ultrasound A-                                           |                  |                 |     |          |          |
| scan and B-scan                                                                         |                  |                 |     |          |          |
| Describe the acoustic impedance of a medium                                             |                  |                 |     |          |          |
| and reflection of ultrasound at a boundary;                                             |                  |                 |     |          |          |
| Discuss impedance (acoustic) matching and use                                           |                  |                 |     |          |          |
| of special gel in ultrasound scanning  Explain the Doppler effect in ultrasound for the |                  |                 |     |          |          |
| speed of blood in the patient $\Delta f/f = 2v\cos\theta/c$ for                         |                  |                 |     |          |          |
| r determining the speed v of blood                                                      |                  |                 |     |          |          |
| r accomming the speed v or brood                                                        |                  |                 |     |          | L        |